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ABSTRACT

Tidal motion in semi-enclosed basins is essentially periodic.

Hence, the solution of tbe shallow water wave equations in Fourier

space  or in terms of harmonic constituents! can be an efficient

alternative to the conventional time � stepping procedures. A numerical

method based on that premise is described; the method combines varia-

tional calculus, an iterative scheme, and the finite element method to

determine the spatial variations of the Fourier coefficients of water

height and depth-averaged horizontal velocities. The elimination of

the velocities from the continuity equation, either analytically or

in an iterative procedure, yields a Helmboltz � type partial differen-

tial equation for the free-surface elevation.

A simplified version of the procedure  linear equations without

the Coriolis acceleration! is applied to Knight Inlet, British

Columbia, a long, deep, narrow, steep � sided fjord. The extraction of

tidal energy through internal mechanisms associated with the flow over

the si.ll is represented by a body force proportional to the depth-

mean velocity divided by the local time-mean depth. Computed results

for the semidiurnal barotropic tidal flow agree fairly well with all

available observations. An attempt to solve the same problem with a

conventional time-stepping procedure demonstrates the efficiency of

the harmonic approach.

When the Coriolis term is retained in the momentum equation, the

a priori specification of a dynamically consistent surface elevation

across the open boundary is difficult. Therefore, a different

boundary condition  specification of flow direction along the mouth

of the estuary, and of tidal height at one point thereon! is proposed

and incorporated in the variational formulation of the Kelvin wave



problem. The strategy provides a means to eliminate a spurious "half-

eddy" produced across the open boundary by inconsistent conditions;

it also results in a cross-channel phase difference at the mouth that

is consistent with other estimates and with the value measured at a

nearby location. It is con!ectured that Poincarh waves generated at

the sill and decaying away from it might be responsible for the sig-

nificant cross-channel motions observed in the vicinity of the sill.



1 INTRODUCTION

The theme of this study is the problem of calculating the

motion induced by oceanic tides in semI-encLosed basins such as

bays or estuaries; this is a time-dependent, boundary-value

problem over a finite spatial domain. Attention will be restricted

to situations where depth-averaged equations of motion can be

regarded as adequate or their solution informative. The problem

is then defined by the conventional set of vertically-integrated,

time-dependent equations expressing conservation of horizontal

momentum and mass in two dimensions. Appropriate conditions are

prescribed along the shoreline boundaries and across the mouth of

the estuary.

Over the past two decades, the availabiLity of ever faster and

"larger" digital computers, together with the development of novel

numerical techniques, has opened many avenues of research for

scientists and engineers concerned with the computation of tidal

motions in coastal zones. A number of procedures has been estab-

lished to solve, approximately, the classical set of shallow water

wave equations for basins of realistic geometrical and topographical

configurations. The most conventional approach utiLizes a time-

stepping procedure to handle the discretization of time in the

governing equations. Spatial discretization schemes based on fin'te

difference theory have been used by the pioneers of the field

 e.g., Hansen, 1956; Brettschneider, 1967; Leendertse, 1967! and

their many followers  e.g., Heaps, 1969; Ramming, 1976; Ronday,

1976; Maier-Reimer, 1977; Crean, 1978!. Nore recently, the finite

element method of spatial approximation has also been implemented

in tidal flow calculations  e.g., Grotkop, 1973; Connor and Wang,



1973; Taylor and Davis, 1975; King, Norton and iceman, 1975;

Brebbia and Partridge, 1976; Gray, 1977; Halters and Cheng, 1978! .

In both cases, the problem is reduced to a system of first-order

ordinary differential equations involving grid point or nodal

values of the unknowns and their derivatives with respect to time.

A considerable amount of attention has been devoted to the problem

of devising time-stepping schemes that ensure the basic stability

of the scheme as well as its accuracy  e.g., Ronday, 1976; Gray

and Lynch, 1977!. Some ingenious methods have been proposed and

many applications have achieved a rather convincing degree of

success. However, from a computational point of view, a common

feature of the time-stepping procedures is that they are fairly

expensive, even by today 's standards, especially in deep bodies of

water where initial transients are not rapidly damped by friction

and/or radiation. An alternative approach is clearly desirable.

The time-stepping approach to the solution of time-dependent

equations is appropriate when the response of the system under study

is truly of a transient nature  e.g., storm surges or tsunamis!.

The same can be said of the method of characteristics, which is

discussed, for instance, by Dronkers �964!. However, the ti.dal

response of coastal waters was known to be predictable to a large

extent due to its repetitive character long before a scientifically

plausible explanation of the phenomenon was put forward.  As noted

by Darwin �898, p. 76! . ancient Chinese writers considered water

the blood of the Earth, and the tides the beating of its pulse.!

Large-scale tidal motions are essentially "periodic" because they

are due to the combined attractions of the moon and the sun on the



waters of the oceans; their coastal manifestations are also "periodic,"

usually with the addition of higher harmonics excited through

various nonlinear mechanisms. This premise is the foundation of

much theoretical  analytical! work concerning tides; it is also the

basis of an approach to practical computations in which time is

eliminated as an independent variable.

In the late 1860's, building upon the work of Newton, Bernoulli,

and Laplace, Thomson  Lord Kelvin! proposed the theory of harmonic

analysis of the tides based upon the development of a sum of periodic

terms. The harmonic or Fourier method has been used ever since

in the analysis of tidal data and the construction of tide tables.

Also, the numerical solution of Laplace's tidal equations over Large

domains  i.e., the computation of oceanic wave motion directly

induced by astronomical forcing! is usually carried out in terms

of the maj or tidal constituents  see Hendershott, 1977, for a

recent review!: the hyperbolic tidal equations are thereby

reduced to a system of elliptic equations. The implementation of

the harmonic method in the calculation of tidal motions in coastal

waters and rivers is discussed by Schonfeld �951! and Dronkers

�964!, the latter giving special attention to the linearization

of the quadratic resistance term of the momentum equation. Until

recently, however, the method of spectral decomposition seems not

to have been extensively used in conjunction with numerical techni-

ques to solve the shallow water wave problem in two horizontal

dimensions, with boundary forcing. Pearson and Winter �977! form-

ulated an approach to tidal computations that combines the use of

Fourier analysis, an iterative technique, variational calculus, and

the finite element method. At the same time, Kawahara and his co-



workers �977, 1978! applied the so-called "Periodic Galerkin Finite

Element Method" to the same problem, resorting to either a pertur-

bation or an iterative method to linearize the equations. Le

Provost and Poncet �978! started with a harmonic, rather than

Fourier, decomposition of the solution, linearixed the frictional

term and used a finite element method to solve a variational princi.�

ple equivalent to the resulting elliptic equation. Snyder st a7,.

�979! also chose the hanmnic representation for theit  finite

difference! model and they handled the coupling of the various

constituents by means of an iterative scheme. In conclusion, the

elimination of the time variable by spectral decomposition of the

equations of motion constitutes a sound and attractive alternative

to the conventional approach.

In the next chapter, the computational procedure proposed by

Pearson and Winter �977! and the simpler linear version described

by Jamart and Winter �978! are summarixed. Chapter 3 is devoted

to a discussion of the application of the linear procedure to Knight

Inlet, a long, deep, narrow, steep-sided fjord with relatively

shallow sills located in British Columbia, Canada. Model results

are compared to available field data, and an attempt to use a con-

ventional time-stepping procedure to compute the tides in Knight

Inlet is briefly described. In Chapter 4, certain problems which

arise when the Coriolis term is restored in the equation describing

the conservation of horixontal momentum are discussed. Finally,

conclusions and suggestions for future work are set forth in

Chapter 5.



2 FINITE ELEMENT SOLUTION

OF THE SHALLOW WATER WAVE
EQUATIONS IN FOURIER SPACE

The equations governing barotropic tidal motions in estuaries

are the well-known set of vertically-integrated, time-dependent

equations expressing conservation of horizontal momentum and mass

in two dimensions [see, for example, Leendertse  L967!]. In its

most general formulation, the momentum equation includes convective

acceleration, Coriolis acceleration, and terms describing the effect

of wind stress and bottom friction. The equation expressing the

conservation of mass is also nonlinear. The conventional condition

on I' , the seaward boundary of the estuary is the specification of
I

the free-surface elevation as a function of time and position; it

is assumed in this and the next chapter that such specification is

indeed possible. Along the shoreline, denoted by I' , the normal
2

velocity is prescribed  usually zero, except when river runoff is

included ! ~ This chapter consists of a review of the approach pro-

proposed by Pearson and Winter  l977! for the solution of these

equations, and of the simpler version of that procedure subsequently

developed by Jamart and Winter �978!.

The computational method described in the first of these papers

is applicable to the general formulation of the problem. The sim-

plified version of that procedure is appropriate for cases in which

Coriolis and advective accelerations and wind stress can be neglected

and the frictional force assumed linear. In both cases, the assump-

tion is made at the outset that the solution is periodic in time.

Therefore, the dependent variables [u x,y,t!, the depth � averaged



velocity, aad g x,y,t!, the free-surface elevation above mean sea

level] caa be Fourier decomposed. Let m be the fundamental ci.rcular

frequency of the motion and let N denote the number of modes required

to describe the temparal variation of the variables. By introducing

in the time-dependent equations of motion the series expansions

� inlal't
u ~ Re 4 U  x,y!e

n=0

- intel t
q ~ Re $ 8  x,y!e

n
n 0

the governing, equations are replaced by a set of modal equations of

the form

 i!
-invU + gal

n n n

-inN + V ~  DU !
�!

n -n n
�!

where D x,y! is the timemean depth, g denotes the acceleration due
�!

to gravity, and V is the gradient operator. The variable 0 is

defined as the n-th complex coefficient of the Fourier series of the

sum of all the terms retained in the momentum equation but two: the

local acceleration and the pressure gradient term. In a similar

fashion Q represents the n-th Fourier coefficient of t e n�! h an-

n

linear term of the continuity equation. Ia both procedures, these

are coupled through the 0 's due to the presence of the nonlinear
n

terms. Nany authors have discussed the linearixatioa of the term

representing bottom friction in the shallow water wave equations

variables are haadled by means of an iterative scheme, i.e., they are

considered known functions of position at each step of the calculations.

In the method of Pearson and Minter, the distinct modal equations



 e.g., Dronkers, 1964, p. 271 e4 seq.; Ippen and Harleman, 1966,

p. 504! . In the simplified approach of Jamart and Minter �978!, the

frictional force is assumed to be proportional to the velocity

divided by the locaI time-mean depth; with E denoting a  constant!

dissipation coefficient, we have

 I! E= � � U
-n D -n

~ �!
n �!

H  x,y! given on I'
n �!

 8!
U ~ n=OonI'
-n 2

where n is the outward-directed unit normal vector. The next step

in both procedures consists of eliminating U between �! and �!

to derive a  complex! Helmholtz equation for H . In the linearized
n

version, we get

2 2 2

E +neD

and the boundary condition condition  8! becomes

aH

= 0 on I'2
3n �0!

Pearson and Winter's equation for H has a right-hand side that cannot

be evaluated analytically and is therefore treated numerically
throughout the iterative procedure. For each mode, the complex

so that there is no coupling between harmonics. Fourier decomposition

is also performed on the boundary equations. If the shoreline

boundary is impermeable everywhere, this leads to



problem is rephrased in terms of a variational principle that is then

solved by means of a finite element method. The same strategy is

adopted in the simplified version because the complete equation  9!

appears not to be amenable to a variational formulation due to the

form of its right-hand side term. Purthermore, in order to facilitate

the handling of a large number of nodal points on the computer,

equation  9! is separated into its real and imaginary parts, setting

h +is
n n n

This leads to a pair of non-homogeneous  real! Helmholtx equations.

Each problem is then recast in terms of the well-known corresponding

for instance, if P denotes the real part of
n

variational principle:

the right-hand side of  9! and A the area enclosed by F and F, h

is given by

2 2

2IVh I
2

h +Fh dA 02g n n n/ �2!

for all 5h vanishing on I'>. The forcing term F is a functional of
Bs Bs

n n
D, h , , and � ; it is known in the sense that its value is esti-n' 3x' 3y'

mated from the results of the previous iteration. A standard finite

element method is used to obtain the approximate solution of each

variational problem. After convergence of the iterative process has

been achieved, the Fourier coefficients of the velocity, U , aren t

computed from equation �!.

The Linearized version of the approach just described is somewhat

easier to implement on a computet' than the more general version for

several reasons. Pi.rst, it does not involve coupling between the

different modes of the solution, thereby alleviating storage require-



ments. Second, the calculation of the velocities  i.e., essentially

the derivatives of the free-surface elevation! is not needed during

the iterative process but only after convergence is achieved; this

is an advantage as long as linear basis functions are used to describe

the elevation. Moreover, the same coefficient matrix is used for the

determination of h and s , and the matrix decomposition need be donen n'

only once because only the right-hand sides are updated iteratively.

En the next chapter, the utility of the simplified procedure in

specific situations is evaluated by means of an application to a deep

fjord. Because only one Fourier mode of the total response will be

considered, the subscript n will be omitted hereafter.



3 APPLICATION TO KNIGHT INLET

INTRODUCTION

Knight Inlet  Figure 1! is a long, deep, narrow fjord with steep

sides and relatively shallow sills. It is located on %he southern

mainland coast of British Columbia, Canada, its mouth facing the

northern part of Vancouver Island. The general characteristics of

Knight Inlet have been described in detail by Pickard �956, 1961!

and Pickard and Rodgers �959!; these authors consider Knight Inlet

typical of fjords along the British Columbia Coast. Knight Inlet is

more than 100 km long, and it has an average width of about 3 km.

It has two sills: an outer threshhold located 10 km west of Nontagu

Point, and an inner one lying between Hoeya Head and Prominent Point.

The latter sill has a maximum depth of about 63 m and separates a

very deep inner basin  maximum depth of 550 m! from a somewhat shal-

lower  = 200 m! outer basin. The inner sill is located near the

middle of a fai.rly long straight section of the fjord. Because its

topography is relatively simple, this segment of Knight Inlet was

chosen as the site for extensive field programs  Smith and Farmer,

1977; Farmer and Smith, 1978; Freeland and Farmer, 1980!. The

main reason and incentive for the initiation of tidal modeling in

this particular inlet was the prospect of comparing model calcula-

tions with reliable field data. It also seemed desirable to

determine the usefulness of the linearized model in a deep fjord

with a rather shallow sill.

At times of high freshwater runoff, Knight Inlet becomes strongly

stratified, and the phenomena associated with the density structure

have been the focus of the investigations just mentioned. Of parti-

cular relevance to the present attempt to compute the barotropic.



Pigure l. Hsp of Knigbe Inlee ~ British Colunbfa. The inset shove
the f jord's location on the British Colushia coastline.
The dots in ehe straight reach indicate locations vhere
tidal currents have been neasured; the nuabering of the
seaeicna ia ccusistent vith eraditiOnal nOeationa enplOyed
in Knight inlet ~

tidal motion is a point made by Freeland and Farmer  l980!:

namely, that a significant portion of the tidal energy appears to be

extracted in the sill region through certain internal mechanisms

which result in the formation of internal solitary waves  Smith and

Farmer, 1977; Farmer and Smith, 1978; Naxworthy, 1979! . An accurate

parameterization of those complex internal phenomena, for use in

vertically-Integrated equations of tidal motion, is probably not yet

possible and certainly beyond the scope of this study.  A quantita-

tive description of such "dissipation" as a function of time would

require careful consideration of, at least, velocities and hence

amplitude of the tide, vertical shear, and nature and strength of



stratification; also i.t would probably involve "switches" to allow

for episodic occurrences of instabilities and sudden changes in the

flow regime!. However, there appears to be no compelling reason why

this type of dissipation should be modeled by the classical quadratic

friction law.

As a first approximation, the working assumption is made that,

in tidal computations, the internal energy dissipitation could be

modeled by the "frictional" term of equation �!. This term acts as

a body force and it has the property that the "momentum sink" is

maximum over the sill where the mid-channel depths are shallowest

and where, from mass continuity alone, one expects the velocities to

be largest. The dissipation coefficient, E, is adjusted so as to

best approximate what is known about the change of phase of the tidal

elevation along the inlet.

In the sections which follow, the finite element discretization

of Knight Inlet is described first. Next, the adjustment of E is

discussed, and the computed results are presented. Then, the model

results are compared with available field data. The next section is

devoted to some numerical considerations. Finally, an attempt to use

a time-stepping procedure to solve the same problem is reported.

SPATIAL DISCRETIZATION
The finite element grid which was first used for Knight Inlet

 Figure 2! extends from Protection Point to the head of the inlet.

The grid is composed of 1584 triangular elements  99I vertices or

nodal points!, and the variables  h and e! as well. as the depth are

assumed to vary linearly over each triangle. The shoreline boundary

follows the 5 fathoms  = 10 m ! contour. Figure 3 shows the topo-

graphy of Knight Inlet after digitization  the contouring program
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that. generated this plot uses linear interpolation between depth

data at the nodal points!.

A second grid vas constructed because the velocity field obtained

with the first grid lacked smoothness in the sill region, especially

at times close to the ebb-flood transition, thereby indicating the

need for better spatial resolution in that area of rapid variations.

The refined grid  Figure 4! covers a portion of the straight reach

that includes the sill, and it vas generated by joining the mid-side

points of the original triangles; the element density is thereby

quadrupled. An algorithm designed to minimise the bandwidth of the

algebraic problem vas used to number the nodes of the refined grid.

An alternative mesh refinement scheme  joining the vertices of each

triangle to the centroid! vas judged unsatisfactory because it led

to rather small angles. The new grid has tvo open boundaries  see

Figure 2! and the motion in the interior of the domain is driven by

specifying on those boundaries the elevations computed with the

coarser grid. The depth values at the additional nodal points are

linearly interpolated from the first grid's data so that the actual

mean volume of the section remains unchanged .

PGNS71%Ãl' OF THE DISS I PATION COEFF I C I ENT

In order to study the effect on the solution of varying the dis-

sipation coefficient, E, a number of runs was made for a wave of

2 2 Q
amplitude  h + s ! = 2 m on I' and of period T 12.5 h. Those

1 P

experiments shoved that the calculated phase difference in elevation,

b,4, betveen the head of the inlet and the open boundary of the model,

I' , is almost linearly proportional to E, at least up to a value of

-2 -1
E 5 x 10 m sec  see Table 1, col. 2!. Moreover, the longitu-
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Figute 4. Fine resolution finite element grid for computations in the vicinity
of the sill  after Jamart and Winter, 1980!.

between Siwash Bay and Montagu Point, 4 � C , fluctuates betweenS M'

0 0
values of 0. 75  January! and l. 7  June! whereas the dif ference

between Wahshihlas Bay and Siwash Bay, g � 4, remains smaller than
0

0.25 . The statistical significance of such estimates is discussed

by Freeland and Farmer �980!. The large discrepancy between these

phase differences will be reflected in estimates of energy dissipa-

dinal distribution of 4 relative to I' shows a very abrupt change of
l

slope in the sill region  see Figure 7b for a typical profile of 4>!.

Consequently, the delay observed at the head of the fjord  relative

to 1'! is caused mainly by the dissipation occurring over the sill

 i.e., the linearized model formulation does provide the intended

parameterization of the physics!.

This last result is consistent with the tide gauge data described

by Freeland and Farmer �980!, who analyzed long-term records

obtained at three locations: Montagu Point  a few lan vest of 1' !,

Siwash Bay, and Wahshihlas Bay  see Figure 1!, hereafter referred to

as M, S, and W. At tidal frequency M , the observed phase difference2'



16

tion rate over the straight section and the sinuous reach and this,

indeed, is one of the main arguments that led Freeland and Farmer

to the assertion quoted in the introduction to this chapter. The

phase observations can be well simulated in the computations by selecting

an adequate value of E, as shown by columns 3 � � 4 = 4 � 4 !
S Tl S M

and 4 of Table l. These phase differences are computed for an M
2

wave whose amplitude on l' is different from the observed one but

they are independent of that amplitude. Therefore, the choice

-2 -1
E 1 x 10 m sec yields a good approximation of the average

phase observation.

Table 1: Calculated phase dfffereacee aed aoeber of iteratiooa
for varfous veloce of the diaafpatioo coefficieat.

� eg gueher of

 degree! Tteratiooa degree!

6 C
-1

 a sec !  degree!

3 x 10

6 x 10

lx10

1.5x 10 '

-2
3x10

-2
5 x 10

0. 411 0.0650.480

0.877 0. 749 0.119

101.37 1.17 0.19

161. 97 1,69 0.26

0,46 263. 74

286.07 5.29 0.72

RESULTS

The most striking features of the results occur, as expected, in

the neighborhood of the sill. However, unlike the longitudinal dis-

tribution of the phase described above, the other two main features

of the solution are present for all values of E, including E = 0. The

first characteristic is a rather large increase in the magnitude of

the current speed and is shown, for example, in Figures $ and 6, where

the velocity vectors in the sill region are plotted on a scale differ-
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ent from that used for the other parts of the inlet.  Note that the

scales also differ from figure to figure.! Xn those figures, as well

as in subsequent displays of the velocity field, the parameter a

denotes the non-dimensional time, a t/Tp. ,the time origin was

chosen such that t is maximum on I'1 at a O.L25 for computational

reasons discussed in "Numerical Considerations." The variation of

mean current speed with depth is merely a consequence of the continuity

equation: neglecting spatial variatious in H, the one-dimensional

25000

2 2DDDO

K w 15000
C3

100DD

5 5000 5000 10000 15000 20000 25000 30000 35000 40000 45000
NEEERS EASE DF 126 DEG. 12 MIN- W-

Figure 5. Velocity vector field calculated oo the global
grid at a ~ 0, i.e., ooe-eighth of a period before oaaiaaaa
tidal height at the eatrance.
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equivalent of equation �! that shows that IU  is inversely proportioaal

to the depth D.

The second feature of the solutioa over the sill is the surface

manifestation of the velocity increase, aaily, the presence ia that

region of a relatively large longitudinal gradient in the magnitude

of the elevation. This feature spans only a few elements of the

global grid, but the same "bump" is present when the calculations

are performed on the refined grid; therefore it is unlikely to be a

2 2
numerical artifact. Figure 7a shows the profile of  h + s ! for

a wave of amplitude 1.5274 m on 1'> and of period 12.5 h, computed
-2 -1

with E = lxlO m sec but indistiaguishable, oa this scale, from

the solution for E 0. The shape of the solution can also be ex-

plained in terms of a partial wave reflection due to the sill  N.

Rattray, Jr., personal communication!. Figure 7b shows the

corresponding distribution of phase relative to P , a profile dis-1'

cussed in the previous section; obviously, there is no phase change

in the elevation for the case E ~ 0. The depth profile along the

same mi.d-channel axis i.s included in Figure 7c for reference. Over

most of the tidal cycle, the free-surface profile defined by Figures

7a and 7b is characterized by aa inflection point near the sill.

However, at certain times  about one � eighth of a period af ter the

time of maximum currents! there appears a local maximum or minimum

in elevation centered at the sill; as aa example, Figure 7d shows

the shape of the free surface at a = 0, i.e., one-eighth of a period

before high tide on I'

As a consequence of the inclusion of a depth-related dissipa-

tion term ia equation �!, side effects are, defacto, modeled due

to the extreme steepness of the fjord's banks. Duriag periods of
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unidirectional flow, the relative shallowness of the boundary

elements is responsible for a marked shear on both sides of cross-

sectional velocity profiles. The progressive decrease in the

magnitude of the velocity near the solid boundary can be observed

in both Figure 6  velocity vector field at a o 0! and Figure 8

 axes of the tidal ellipses!. The magnitude of that shear increases,
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of course, with increasing E. Also, the larger resistance asso-

ciated with the boundary elements produces cross-channel variations

in phase  the tide "turns" first along the edges! that result in

the formation of eddies during the ebb-fI.ood transitions. This is

illustrated in Figures 9 and lO which show the tidal current pat-

terns shortly after high tide.

COMPARISON NITH AVAILABLE DATA

Host of the results from field measurements referred to in this

section have not ~ as of this writing, been published; they were

kindly cosasunicated by Dra. G.A. Cannon and H.J. Freeland who not

only collected and analyaed the data but also contributed much to

their interpretation.

Three basic limitations hinder somewhat the so-called model

validation process. The first stems from the decision to test the

usefulness of a purely linear model. In particular, the character

uf the solution in the area of the sill suggests that the convective

acceleration term may not be negligible in that region; however,

this drawback is intrinsic to the nature of the exercise. The

second li.mitat ion is related to the ob]ectives of the field programs

recently conducted in Knight Inlet, usa.. the study of the internal

phenomena associated with the flow of a stratified fluid over

rugged bottom topography: part of the resulting data set does not

possess a sufficient temporal and spatial coverage to allow the

accurate calculation of the depth-averaged tidal velocities. The

third difficulty is one of data interpretation; namely, the problem

of extracting from the total  measured! motion that component which

is the ob!ect of the modeling attempt. Xn spite of these limita-
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W/S S/M

mean 1.0138
minimum 1.0127
maximum 1.0153

1.0276
1.0263
1.0284

tions, enough information is available to assess the general validity

of the model.

In this section, attention is restricted to the tidal constit-

uent which is dominant in Knight Inlet, i.e., the principal lunar

semidiurnal  M ! tide. Comparisons similar to those reported here

between observations and model results at the diurnal frequency show

the same degree of general agreement. The following comparisons

are also restricted to the up- and down-inlet component of the

velocity; the transverse component of current will be discussed in

Chapter 4 . Lastly, it should be pointed out that all the figures

displaying the velocity field correspond to results obtained for a

wave of amplitude equal to 2 m at the open boundary, whereas the

measured elevation at the M2 frequency is l.5274 m  Freeland, per-

sonal communication; this value was obtained from the harmonic

analysis of a one year-long time series at Montagu Point!; the

"calculated speeds" quoted in this section correspond to the

measured forcing.

Free-Surface Elevation
As described in "Adjustment of the Dissipation Coefficient," tidal

elevations have been recorded at three locations for more than a year.

In the same section the adjustment of the model was discussed; i.e.,

choosing S so as to simulate the "average" phase information for the

M tide deduced from the measurements. The M amplitudes computed by

Fast Fourier Transform of eight 29-day time series are in the following

ratios  M designates Hontagu Point, S Siwash Bay, and W Wahshihlas Bay!:





The amplitude of the barotropic M velocity at station 5 can be
2

deduced vectorially from the two pairs of current observations

made by Cannon at stations 5 and 5 . The resulting value of
N S

9.2 cm sec is exactly the same as the calculated velocity at1

mid-channel; no phase measurement with respect to elevation is

available. The baroclinic  residual! components of the fluctuations

recorded by those four current meters suggest the presence of a

standing internal Kelvin wave  Freeland, personal coaInunication!.

Attempts to estimate the depth-averaged velocity from the four

instruments moored at station 4 have not been successful. However,
-1the model result, approximately 7.5 cm sec , is comparable to the

observed longitudinal speeds  8.32, 7.90, 5.49, 7.50 cm sec at 65,

125, 300, 363 m respectively!.

The only information presently available on the magnitude of

the tidal currents over the sill  station Q! comes from the measure-

ments reported by Pickard and Rodgers  l959! . As these authors

emphasize, the accuracy of their observations is greatly affected

by many uncertainties due, among other things, to the natural

variability and complexity of the flow and to ship motion. Moreover,

no time series analysis of the data is possible because of their

limited duration. However, the usefulness of Pickard and Rodgers'

measurements can be tested by comparing their results for station 5

to the more recent data for the same location. With a tidal range

of about 4 m, they report a mean range of longitudinal currents of
-1 � 1about 30 cm sec at 200 and 300 m and about 24 cm sec at 100 and

50 m. These can be roughly converted to mean velocities of 11.4 and
-1

9.2 cm sec,respectively, for a wave of amplitude 1.53 m, which are
-1very close to tbe value of 9.2 cm sec mentioned earlier. Appli-



cation of a similar conversion at station 34, where a range of
-l

speeds of 150 cm sec was observed at a time when the tidal range

was about 5 m, yields an estimate of 45.9 cm sec for the M
2

velocity at that location; the closeness of the calculated value

�6. 7 cm sec ! is, of course, fortuitous, but i.t confirms the

overall pattern of fair agreement between observations and model

results.

Lastly, no current measurements were made close enough to the

lateral boundaries of Knight Inlet to provide evidence for the side

effects discussed at the end of the previous section, but the occur-

rence of such effects has been reported for other steep-sided

channels. Thomson �976, 1977! concludes from his study of currents

in nearby Johnstone Strait, a fjord-like narrow tidal channel along

the northeastern side of Vancouver Island, that "the M constituent
2

 exhibits! cross-channel symmetry with respect to phase in which the

currents in the central part of the strait  lag! those at either

shore by approximately 30  sl hour!." The phase gradient is

steepest in fairly narrow zones  a few hundred meters! on both sides

of the channel. The transverse phase gradients that were calculated

in the case of Knight Inlet are comparable to those observed in

Johnstone Strait  for instance, in the vicinity of station 3, the

calculated velocity along both shores leads that in the central part

0of the inlet by about 40 !; those phase gradients and the related

shear in the magnitude of the tidal velocity are concentrated along

the boundary. A similar phase lead along a lateral boundary has

also been observed in Hood Canal, Washington, by Shi �978! who

remarks that "it is similar in mechanism to the Stokes oscillating

boundary layer in a  viscous! flow." In the case of Rood Canal, the



than when only one variable is "excited" on i' . For instance, with1'

� 3 -1
c = 10  and E = 3 x 10 m sec !, convergence is achieved after

five i.terations if h = s = v2 m at the open boundary, while it

takes fourteen iterations for a similar run with h ~ 2 m, s = 0 on

F to converge. On a Cray-1 computer the latter run requi.res
l t

[These numbers,5.25 CP seconds and the former 2.60 CP seconds.

incidentally, give some indication of the speed of the Cray-1

computer; the construction of the basic matrix of the algebraic

system expressing the discrete approximation to the variational

magnitude of the tidal velocity decreases markedly near the shore.

The conclusion drawn from such admittedly limited comparisons

with field data is that the simple linearized model appears to be

capable of reproducing the main features of a given tidal constituent

in a deep estuary such as Knight Inlet. regardless of the exact

nature of the internal dissipation processes.

METRICAL CONSIDERATIONS

As mentioned in Chapter 2, the numerical procedure adopted

to solve, with an iterative scheme, the equations corresponding to

the real and imaginary parts of equations  9! and �0}, is basically

the same as that reported in Jamart and Minter �978}. As a practi-

cal definition of convergence, it was decided to terminate the

iteration loop when the relative change between successive estimates

of both variables is smaller than a given tolerance, c, at all nodal

points. An important modification of the procedure concerns the

boundary condition at the mouth, and, specifically, the partitioning

of the amplitude of H, ~H  =  h + s ! ,  recall that H = h + is

or g h cos <ut + s sin et! between h and s. The computational

scheme is faster when ~HI is equally distributed between h and s



problem  a rectangular 997 x 35 matrix! and its LU decomposition

for Gaussian elimination take little more than one second of CP

time.] The outcome of this comparison might be different if the

convergence criterion dealt with the absolute rather than the relative

change between successive iterations.

Two other factors influence the number of iterations needed to

satisfy a given convergence criterion: they are the value of the

dissipation coefficient, E, and  to a lesser extent! the number of

Gaussian points used in the numerical. integration of the  nonlinear!

"forcing terms" on the right-hand side of equation  9!. Column 5

of Table 1 shows how the number of iterations  with c l0 ! varies

with E. The last two numbers in Table 1, corresponding to

E 3 x 10 and 5 x 10 m sec , should be qualified by a question

mark: they indicate the number of iterations after which successive

estimates of h and s vary between two "constant" values  six signi-

ficantt digits!, apparently without further convergence until the

40th iteration, when the computation is terminated. The relative

change between two successive iterationa is everywhere smaller than

3 x 10 so that this puxzling behavior does not seriously affect

the accuracy of the results.

For the problem defined by equations  9! and �0!, the conver-

gence of both variables towards their "stable" value is oscillatory

with a period of two iterations and the upper and lower envelopes

are monotonic after the first few iterations. Hence, the conver-

gence of the iterative process can be accelerated in this case by

using as the current value of the unknowns the mean of the last

two estimates. However, the character of the convergence is differ-

ent when other terms of the governing equations are considered. For



instance, the convergence is asymptotic rather than oscillatory for

the "Kelvin wave equations" discussed in Chapter 4 . Therefore, it

appears that extrapolation schemes to accelerate convergence should

be designed on an ad hoo basis.

Six different formulae for performing the numerical integration

of the forcing terms have been compared. The programming and the

numerical values of the various coefficients and weights vere checked

by running the computer program for a flat bottom case; the forcing

terms are then linear functions of position so that the integration

should be "exact," except for round-off errors. The numerical

experiments show that four formulae yield essentially the same

results at the same cost, and, for a tolerance t ~ 10 , the itera-

tive scheme converges in 3 iterations. They are given by Strang

and Fix �973, Table 4.1! and denoted  a! 13-point formula, degree

of precision 7;  b! 7-point formula, degree of precision 5;

 c! 6-point formula, degree of precision 3; and  d! 3~oint formula,

degree of precision 2, all three points being inside the triangle.

[Note that there is a misprint in the first veight of  b! and in the

last area coordinate value of  a!.] The 3-point formula that involves

the mid-side points requires five iterations and is rather inaccurate

 e.g., it gives a phase difference over the total length of the inlet,
0 -3 -I -4

hC, equal to 0.601 for E = 3 x 10 m sec and t 10, whereas

the 13-point formula yields 5 4" 0.480 !. If the integration scheme0

uses the nodal values of the forcing function, the iterative procedure

diverges in the case of Knight Inlet. With the exception of the

experiments concerning the partitioning of !HI between h and s, all

results reported in this chapter vere obtained with the 13-point formula.

The experiments just described were performed with the coarse



grid shown in Figure 2. The solution on the refined grid of Figure

4, which has two open boundaries along which the elevation is speci-

fied, requires at most three iterations. Also the discrepancies

between the results obtained with the 3-point integration formula

 mid-side points! and those calculated with the 13-point formula

are much smaller on the fine grid than on the coarse one.

03551BA'S ON THE APPLICABILITY
OF A TIME-STEPPING PPQCEDURE

The efficiency of the modal decomposition approach as compared

to a time-stepping procedure is illustrated in this section. To

this end, the numerical model developed by Connor and Wang  and

described in their joint publications of 1973, 1974, 1975! was

applied to Knight Inlet. The model used is designated as CAFE-1

[Circulation Analysis  using! Finite Elements, one-layer model],

and the computer code was made available through the services of

the Massachusetts Institute of Technology Sea Grant Program  see

reference HIT/Marine Industry Collegium!. The CAFE-1 model is

designed to solve a set of equations that differs from the usual

shallow water wave equations by the inclusion of horizontal internal

stress terms, modeled by means of "eddy" viscosity coefficients.

The equations are transformed to their so-called weak form  a pro-

cess akin to a formulation based on the method of weighted

residuals! on which the finite element method is applied  linear

triangular elements!. Wang and Connor �975! have considered

several different schemes for the time integration of the resulting

system of ordinary differential equations and they selected a "time-

split" procedure  in which the variables, i.e., discharges and total

depths, are calculated at alternating time steps! for use in CAFE-1-



Several applications of the model for the calculation of tidal and

wind-driven circulations in real systems exemplify its usefulness.

Wang and Connor �975! describe three case studies, of which the

most detailed one is the application to Massachusetts Bay- [inciden-

tally, it appears from their discussion that the real purpose of

the inclusion of the lateral viscous terms is to ensure numerical

stability or, in some instances, to saeoth out shortmavelength

noise.] Other illustrations include the application of CAFE-1 to

the Great Bay estuarine system  Celikkol and Reichard, 1976! and

to part of Biscayne Bay  Swakon and Wang, 1977!.

As might be expected in a pioneering enterprise of such com-

plexity, the procedure developed by Connor and Wang is not flawless.

Several pertinent remarks can be found, for instance, in Lynch's

�978! critical review of the recent literature on this topic. In

the present study, various computations with CAFE-1 of linear,

frictionless long waves in rectangular basins of constant depth have

led to the conclusion that the numerical solutions obtained with

this program are rather inaccurate. The main problem, however, is

the necessity of using a fairly small time-step in order that the

scheme be stable. This was recognized by Wang and Connor �975,

p. 127! who could not explain why the split-time procedure, found

analytically to be "linearly unconditionally stable as an initial

value problem," is actually unstable in practice when the effective

time-step exceeds the Courant-Friedrichs-Lewy constraint by about

50%. According to Lynch �978!, the appropriate stability constraint

for this scheme is the same as for the leapfrog method; the criterion

is nearly idenrical to that "experimentally" derived by Wang and

Connor. Thus, for practical purposes, the time-step used in CAFE-1



is approximately constrained by the condition

2At < At

~2gD

where As is the grid size and D the depth of the water. In the case

of Knight Inlet the combination of high resolution  i.e., small As!

and large depth leads to the requirement of an exceedingly small

time-step. Starting from rest and using the "coarse" grid of Figure

2, with At 10 seconds, the procedure ia unstable after about 400

seconds; with At ~ 5 seconds, no instability occurs during the first

800 seconds of the integration. If one assumes that the latter

time-step is small enough to carry out the calculations in Knight

Inlet, approximately one hour of CP time on the Cray-1 computer would

be needed to cover a single N period. 'This figure does not compare
2

favorably with the CP times required by the procedure described in

this study  less than 10 seconds, see "Numerical Considerations" !.

Hence, the application of CAFE-1 to Knight Inlet was aborted.



NNS4 REMARKS ON 'IHE EFFECT
OF THE EARTH'S ROTATION

STATEMENT OF LHE VARIATIObVQ. PROBLEM
In a narrov, elongated basin such as Knight Inlet, physical

intuition might suggest that the Coriolis acceleration should not

greatly affect the barotropic tidal flov. In practice, hovever,

the inclusion of the Coriolis term produces certain difficulties,

regardless of whether or not the dissipation term is retained.

Following an outline of the problem and the method of solution, two

questions will be discussed in this section; they are a! the

specification of the condition at the open boundary, and b! the

effect of a sudden change in depth.

Consider the simplest possible  i.e., linear, frictionless!

equations of wave motion taking into account the Earth's rotation.

In the notation of Chapter 2, with f denoting the Coriolis

parameter, and e a unit vertical vector directed upwards, the

governing equations are

�3!-igU + fe x U � gVH
z

-iIEH + P +  DU! = 0 �4!

Equation �3! can also be written as

, -i uVH � fg x VH!
 m -f!

�5!

and the substitution of �5! into �4! yields

2
V -  DVH! +  v � fg f

8+ i � e ~  VxDVH! = 0
g m -z �6!

The condition  8! of zero normal flow across the solid boundary

becomes



 n ~ V + i � r ~ V!H = 0 on I'f
m 2 �7!

where n denotes the outward-directed normal unit vector and

e x n. Mt us assume, for now, that we can specify thez

elevation at the open boundary, i.e.,

H given on I'I �8!

2

V  DVh! +
 ~ -f! f

h- �  Ds -Ds! -0
g xy yx

with

f as� � � � =0 onI'
Bn m 3T 2 �0!

and

�1!h given on I'
I

is equivalent to the variational condition 6J = 0 for all 6h
I

vanishing on F with
l

Two approaches to the solution of �6!, �7!, and �8! have

been considered; as in Chapter 2, both involve the separation of H

into its real and imaginary parts, H h + is, and an iterative

scheme for the calculation of h and s. The third term of �6! and

the second term of �7! are then "known" functions of space at each

iterative step, for those terms contain only derivatives of s in

the equation for h, and dice fez'sa.

In the fi.rst approach, the "forcing" terms are simply carried

along in the variational formulation, Therefore, the variational

functional contains a boundary integral. For example, the problem

statement for h, i.e.,



2 2

J  h,h,h ! �  h +h ! ~hj ' x' y 2 x y 2g
A

+ �  D s -D s !h dA- J � � hdf,, �2a!f fD 3s

xy yx J a.

where 4 denotes arc length along the contour. Similarly, the

variational integral for s is given by

2 2

J  s,s ,s ! = 2 s + s ! 2 sD 2 2  ~-f!
x' y 2 x y 2g

A

� �  D h � D h !s dA+J � � s d  . �2b!f fD ah

   ! x y x y

r,
Obviously, this approach can also be implemented with the more

general forcing functions that would result from the insertion of,

say, a frictional term in the momentum equation. The forcing func-

tion might then also involve derivatives of the function that is

varied, as was the case with the right-hand side considered in

Chapter 2, and denoted by F in equation �2! . The value of the
n

function can then be computed from the results of the previous

iteration.

In the alternative approach, the specific form of the forcing

term is considered, and the boundary condition along I'2 is made a

natural condition of a variational principle that consists only of

an area integral. Consider again the problem for h. If we define

4=Dse -Dse
y-x x-y

equation �9! can be written as

2 2

V ~  DVh! + h � V . y = P



and a variational principle can be constructed in the usual way.

2 2
hl � f f

-6J  h,h, h ! V  DVh! + h- � V. $ 6hdA
2 x g  h!

the first two terms yield, by a routIae manipulation,

2 2

-h � ~Vh[ JA + D � " hh J  + h   � !- h ah
2  In 2g

Because !IJ is a function of s only, the third term is equal to

6 � 0 VhdA � J � n ~ g 6h d f f
4!  J!

The integration of the boundary terms can be limited to I' since

6h : � 0 on I', and, becauseI'

 Is
n . j D s n � s n ! ~ D�

y x x y  IT

6J 0 for all 6h vanishing on I' vith
2 I

2 2
J  hh,h!= �  h +h!-~h

x' y 2 x y 2g
A

+ �  sh -sh! dAfD xy yx �3a!

A similar derivation for s leads to

2 2

J  s,s,s ! J �  s +s!922 >-f

2 y J 2 x y 2g s

A

equation �0! is the natural boundary condition resulting from the

variational conditi.on
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+ �  sh-sh!dAfD xy yx �3b!

Equations �3! can also be derived directly from �2! ~

For Knight Inlet, both the solution of equations �2a-b! and

that of equations �3a-b! were programmed. The integration of all

the terms over each element, and, for equations �2!, over each

boundary segment can be performed exactly. Hence, as expected, the

two approaches lead to identical results at each step of the

iteration.

Although little is gained computationally by use of the second

formulation, it has a somewhat unusual property. The two variational

problems defined by �3a! and �3b! are coupled through the last

term of each integral. Because these terms are identical, it is

possible to formulate a unique variational principle equivalent to the

pair of coupled real equations and boundary conditons, resulting from

the splitting of the complex equations �6!, �7!, and �8!. Such a

principle was given by Pearson and Winter �977! [their equation

�1! j and also, in a different form, by Hamblin �976! . A simple way

to construct the global functional J h,h ,h ,s,s ,s ! is to setx' y' ' x' y

-26J = �6�H* + �6!*6H dA

A

D �7�H* + �7!QH d<

where the numbers �6,17! denote the left-hand side of the respective

equations, and the asterisk a complex conjugate. After some algebra,

J turns out to be real and given by



2 2

J J �  h +h +s +s!D 2 2 2 2 I  m � f 2 2
 h+s!2 x y x y 2 g

h

f
+ � D sh � hs!dA

m xy xy
�4!

a. the minor axes of the ellipses of the elements close to

the open boundary are much larger than in the previous

case,

b. the tidal ellipses are also much "fatter" in the sill

area, and

c- the maximum speed over the sill is about 75X larger than

-2 -1
the corresponding value obtained with K = 1 x 10 m sec

The first point is expanded upon in the following section, and a

The details of the derivation are described in Appendix A. It is

easily shown that in the ahsence of rotation the variational prin-

ciple is simply Hamilton's principle applied to the linear shallow

water wave problem, i.e., the variational functional J is propor-

tional to the difference between total ki.netic  T! and potential  V!

energies. However, with f g 0, the physical principle expressed

by �4! is not entirely clear, but J is definitely not proportional

to either T + V, as claimed by Hamblin �916, 1978!, or T-V as in

Hamilton's principle.

RESULTS

Figure ll shows the main axes of the tidal ellipses obtained

by solving the Kelvin wave equations �2a,b! with the condition that

h = s = v 2 m on F . There are three ma]or differences between these
l

results and those described in Chapter 3 and summari.red in Figure
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modification of the boundary condition at the entrance is proposed

to eliminate what appears to be an unrealistic result. Both the

second and third points appear to be related to the broad topic of

the effects on waves of lateral boundaries. The rigorous mathe-

matical description of such effects is very complex. A detailed

catalog and comprehensive bibliography of various phenomena  e.g.,

partial or total reflection, trapping, diffraction and scattering>

interactions! can be found in the recent book by LeBlond and Hysak

�978! . Only a heuristic argument will be developed in this chapters

leading to the conjecture that Poincare waves generated at the sill

might be the source of significant observed and calculated cross-



channel motions in that area. The third point can be partly

explained by the absence of the frictional effect along the bound-

aries in the results of Figure ll. Without the Coriolis term the

maximum speed over the sill occurs in the middle of the channel for

� 2 � I
E = l x 10 m sec; with E 0, it occurs in a boundary element

and is about 351 larger. In all cases, the velocities away from the

solid boundary are nearly identical.

MODIFICATICN OF 'IHE CONDITION

AT THE OPEN B XJM!ARY

When a uniform elevation is imposed along the mouth of the

estuary, the nearby velocity field is characterized by the presence

of a large permanent "half-eddy," i.e., the direction of the flow

at one end of I'> is almost opposite to that at the other end as

shown in Figure 12. Such a feature is unrealistic and the boundary

condition chosen on I' is clearly inappropriate. Pearson and
I

Winter  l977! encountered a similar problem in their computation

of tidal flow in a semi-elliptical basin. They argue that the great

sensitivity of the currents i.n the interior of the domain to small

changes in the seaward boundary condition results from the fact that

the mathematical problem is not well-posed. They discuss the imple-

mentation of a proper matching technique, the so-called "admittance

condition "  e.g., Lee, L971; Garrett, 1915!. Xn actual practice,

they advocate the use of a "simpler procedure in which a small phase

gradient is imposed on the tidal height input at the seaward

boundary." Such a procedure is essentially a trial-and-error

approach, guided by the condition that the flow along I' should be
I

nearly normal to the entrance of the basin. Maier-Reimer �977!

also reports "obviously falsified results" in the neighborhood of a
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"doubtful boundary condition" in his model of the residual circula-

tion in the North Seal he attributes the feature to a lack of

geostrophic adjustment along the boundary and chooses to ignore the

problem on the basis « its limited spatial extent � to 6 grid lines!-
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With V 0, the longitudinal velocity near I' is given by
I

V = � i �, and it is easily verified that the boundary condition.~as
3x

at the corners between I' and I' is uniquely defined. The velocity
I 2

U can be estimated from the results obtained in the previous

chapter with E = 0. In that case and with h s = t2 m on I', the
I

average value of U, over all elements that have at least one node

on I' , is U = 14.2 � � i! cm sec and �5! yields
I

In the case of Knight Inlet, the phenomenon is also restricted

to a few elements adjacent to I'I  Figures ll aad 12!; it appears to

be due to the inconsistency of the boundary conditions at the junc-

tions of I' and I' , and not related to the "effect of landward tidal

reflection"  Pearson and Minter, 1977!. Taylor's condition for

total reflectioa of the incident Kelvin wave  Taylor, 1921, or see

Defant, 1961, p. 213! is certainly satisfied for such a narrow

chaanel; moreover, the Poiacare waves that are necessary to

satisfy the condition of ao normal flow at the head of the inlet

decay within a few kilometers of the landward barrier. In order to

make the boundary conditions consistent at their junctions, a trans-

verse slope must be specified across I' on both the incoming and the

outgoing Kelvin waves, or equivalently, a phase gradient. The

appropriate modification can be estimated in several ways.

The first method  Taylor, 1919! follows directly from the

assumption of cross-channel geostrophic balance along I' , i.e., in

the y-direction  see Figure 2! . With U ~ Ue + Ve , such a balance-X

is expressed by
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BH -6

By
= -I 61 x 10  I-i! �6!

by x > 0, 0 < y < a, and define c  gD! , O � , and F = � .
ma

0 c m
0

Brown shows that if O « I, the end effect is virtually absent

[in fact, it is 0 O ! J and the elevation is approximately given by2

-imt
< = Re e [�-FO! cos OX + iOF l � 2Y! sin OXI, �7!

xwhere X = � and Y = +. From �7!, we see that the amplitude of Ha a'

2
is independent of y to order O, The phase of the elevation is

symmetric about the mid-channel axis and negative on the right-hand

side of the incoming wave; the phase difference between Y 0 and

Y = l is given by

-i  OFq=2 tan � F tanOX �8!

For the H tide in Knight Inlet, with a 3000 m and using a depth2

3D = 200 m representative of the outer basin, we have O = 9.5 x 10

and F = 0.80. Since X < 33, equation �8! can be approximated by

64 = O FX =
gD

�9!

For x = 100 km, equation �8! yields 64 = 0.lq3 while �9! gives

064 = O.l36 . This aPProach is useful because it gives some indica-

tion of the magnitude of the phase gradient that is appropriate

A second estimate of the correct boundary condition can be

derived from available analytical solutions fbr the problem of the

reflection of a Kelvin wave by the end wall of a rectangular basin.

For Knight Inlet, the most appropriate formula is the limit derived

by Brown �973! for very narrow canals. Consider a semi � infinite

rotating canal of constant depth D that occupies the region defined



The fourth approach is somewhat more general and yet fairly

easy to implement on a computer. It consists of specifying the sur-

face elevation at only one point of the open boundary and the

direction of the veloci.ty along the entire entrance. This strategy

has also been used by Walters and Cheng �978!, although for a com-

pletely different reason, namely, to satisfy better the requirement

of continuity. Given the geometrical configuration of Knight Inlet,
it seems reasonable to require that the velocity be normal to the

entrance of the inlet segment. The boundary condition �8! is then

replaced by

�0!
U ~ r 0 on I'

l

or, upon substitution of �5!, by

� +i � � =0 oal',BH m 3H
f �1!

with H specified at one poiat of I' . The aew complex condition �1!
I

across I . However, its applicability to a long fjord such asI

Knight Inlet is restricted mainly by the assumption of constant

depth. This is also true of the results of Pearson �977! .

A third approach  M. Rattray, Jr., personal communication! is

based on the limited extent of the perturbation due to a poor choice

of the mouth condition aad the apparent adjustment that occurs

betveen I' and the sill  Figure ll!. The finite element grid could

be extended seaward of I' in a fictitious rectangular canal at the
I

ead of which a uniform elevation would be specified; the solution

at I' wou1d then have adjusted to geostrophy and the flow would be

normal to the true entrance as desired.
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central node is negative at the southern shore, positive on the

other side.

An independent estimate of the phase difference between the two

sides of the channel is available from tide gauge measurements made

on both sides of station 3  see Figure 1!. After correction for

clock drifts  a few seconds at most!, the mean of four observations

0 0
is 0.13  elb seconds! with a standard deviation of 0.017  Freeland,

personal cosmtunication!. From the r.m.s. noise level in similar

tidal elevation spectra, Freeland and Farmer �980! evaluate an

expected error in phase determination of 0.08 at the M frequency.0
2
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However, they argue that such error bars should be regarded as

pessimistic estimates considering the consistency in sign of many

observations of very small phase differences. Although the size of

the sample described above is very small, the magnitude of the

standard deviation tends to add credibility to the significance of

the mean  using Student's t-test, the 95X confidence interval is

+0.05 !.

In conclusion, the general agreexsent amongst the several phase

gradient estimates is very good and is unlikely to be fortuitous.

The problem formulation described by equations �2! does provide a



means to eliminate the spurious eddy in the vicinity of the open

boundary. A comparison of Figures ll and 13 shows that the results

over most of the inlet are not affected by the modification of the

boundary condition.

EFFECI'S OF THE SILL

As discussed in Chapter 3, a major effect of the sill is a

sudden and large increase in the magnitude of the longitudinal

velocity in order to satisfy mass continuity. This effect is also

observed when the Coriolis term is included in the equations, and

the resulting longitudinal distribution of the amplitude of the

elevation is similar to that of Figure 7a. However, the amplifica-

tion factor between Siwash Bay and 1' is a bit smaller than in the
l

absence of rotation �.0310 instead of 1.0351! and therefore closer

to the observed value  see "Comparison with Available Data" !. The

amplitude ratio between Mahshihlas Bay and Siwash Bay i.s almost

unchanged �.0129! .

A second effect of the sill is a perturbation of the geostrophic

adjustment in the cross-channel direction that was achieved in the

neighborhood of the entrance by the method !ust described. For the

linear case under study, with U ~ Ue + Ve , a consideration of the
X y

momentum equation in the y-direction indicates that the two terms

that can balance the increase of "f U" are:

i! the force due to lateral pressure gradient, "g � "
By

ii! a cross-channel acceleration, "-imV."

It appears that both terms are needed to explain the results ob-

tained here. Constraints on the problem are 1! the condition of

zero normal flow at the lateral boundaries, and 2! the requirement

that the free-surface elevation and the transport be continuous
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over the obstacle.

The cross-channel variation in the calculated free-surface

elevation is best shown by the results for the phase . Figure 1$

displays the phase relative to the central node of I' as calculated
I

on the refined grid. Across the western open boundary of the

0
refined grid, the cross-channel phase difference 6 C' is 0.152

very close to the corresponding value across I' , the open boundary
1

of the coarser grid. In the vicinity of the sill, 6 0 increases

0
rapidly to a maximum of about 0.2S, indicating an increased

tilting of the free surface in the shallower region. No field

evidence is available to verify or contradict this observation

based on calculations. However, the result is not inconsistent with

the phase difference obtained by applying locally the equation

derived from Brown's �9�! results for a constant depth, narrow,



rectangular channel. With x = 75 lus and D = 50 m as the average

0depth at the sill, equation �8! yields 6e - 0.37  this equation,

however, is rather sensitive to the choice of mean depth and with

0D = 75 m, for example, it gives 64 tc 0.25 !. Figure 15 clearly

shows the tendency towards geostrophic ad!ustment by increased

tilting of the sea surface. However, the tidal ellipses of Figure

13 also indicate significant cross-channel motion at the 8

frequency in the vicinity of the sill.

In order to satisfy the boundary condition at the lateral

walls, the cross-channel motion must be composed of Poincare

modes, i.eep the solution is oscillatory in the "y-direction."
2 2 2

 w � f
Since � > 0, none of these poincate waves ptopanates

a2 00

away from the sill, and the "x-dependence" is an exponential decay

on both sides of the obstacle. The evidence for the presence of

those modes in the results of the calculations is somewhat vague

for several reasons. First, the bathymetry of the inlet and the

configuration of the shoreline are sufficiently complex to blur the

idealized picture of "pure" Poincare waves generated and trapped at

a step-like obstacle in a straight channel. Second, the finite

element grids used in this study are only marginally suitable to

resolve perturbations of the basic flow on such small scales. Third,

the limitation imposed on the accuracy of the solution by the finite

rate of convergence of the iterative scheme has to be kept in mind-

Last, the condition of zero normal transport along the solid bound-

ary is not as well satisfied as in the absence of rotation,

especially in the proximity of sharp angles  see Figures 13 and

14, near Hoeya Head and HacDonald point for instance!. The refi.ne-

ment of the grid does not eliminate the problem. It may be that
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the boundary condition needs to be more strictly enforced than isy

i.n some cases, the natural boundary condition of a variational

principle. h procedure to that effect has been suggested recently

 Jamart, 1980!, but it has not been implemented for Knight Inlet.

In support of the proposed conjecture, note that in the center of

the channel the ratio of the length of the minor axis to that of the

major axis is about 0.30 over the sill and decays rapidly on both

sides, somewhat faster on the wider, down-inlet side of the sill than

in the up-inlet direction. Short wavelength oscillations can be seen

in plots of cross-channel distribution of the Fourier coefficients of

the north-south velocity, but the confidence limits are fairly

large. Finally, a comparison of Figures 5 and 14 shows that the

pattern of velocity directions is less smooth when the Coriolis

term is included ln the calculations. Observations also provide

evidence of cross-channel motion at tidal frequency.

The velocity measurements of Pickerd and Rodgers �959! at

stations 34 and 5  Figure 1! clearly show that large transverse com-

ponents of current are observed in Knight Inlet. 1'he cross-channel

currents are much larger at the sill than in deep water, Noreover,

Pickard and Rodgers point out that "the directions and magnitudes

 of these cross-channel currents! appear to vary randomly and do

not show any significant tidal component" at station 5, whereas,

at the sill station, there is "some apparent tidal periodicity in

the transverse components." They attribute this latter feature

"to an effect of the bottom topography which apparently results in

the flood and ebb direction being less than l80 apart in that inlet

section." In fact, their interpretation  see Pickard and Rodgers,

1959, pp. 668-669! is based solely on the configuration of the



shoreline, and hence differs from t' he present suggestion that the

sill is responsible for the generation of transverse waves in the

inlet. Further observational evidence for transverse motion at

tidal frequencies can be deduced from Cannon's current measurements

at stations 4, 5 , and 5 . Table 2 lists the magnitudes and phasesN'

of the N spectral components coassunicated by C. Cannon, and the2

ellipses' characteristics that were calculated from those data. As

discussed in "Comparison with Available Data," the large phase

differences between observations at different depths on a given

mooring are indicative of the importance of baroclinic motion in

the inlet. Nevertheless, it appears that significant transverse

currents are measured at the station closest to the sill. while all

North-South velocity components recorded at stations 5 and 5 are

below the noise level of the spectra.

Table 2: Reaulta of curreot eeaauraeent ~ at atationa 4, 5, and 5>  c~icated by C Cannon!.

H TEEERL Current ~2

PE AS
 deg

E63,
]25.
77.
21.

112.

145.

112.

143.

t Re at ive to ao arbitrary tice origin  the beginning of the record!.
tt 4 oioua aign iadicatea clacket ae rotation of the velocity vector.



5 SUMMARY, KINCLUS TONS,
AND RECOMMENDATIONS
FOR FUTURE WORK

For tidal computations, the solution of the shallow water wave

equations in Fourier space or in terms of harmonic constituents is an

attractive alternative to the conventional time-stepping methods. The

harmonic approach has proved useful in the computation of tides in

ocean basins  Hendershott, 1977!, shallow bays  Synder e0 a7, 1979!,

harbors  Kawahara and Hasegawa, 1978!, and deep inlets  the present

study!. The premise of the approach -- the decomposability of the

time-dependent tidal signal into modes corresponding to discrete

frequencies � � is also commonly used to verify physical. or numerical

models  e.g., Whalin et al,, 1976, Ronday, 1979!.

The procedure proposed by Pearson and Winter �977! for the

computation of tidal constituents and the simpler linear version

described by Jamart and Winter �978! are outlined in Chapter 2 .

Chapter 3 describes the application to Knight Inlet, British

Columbia, of the simplified version of the computational procedure.

It is assumed that the internal mechanisms that extract energy from

the barotropic tidal flow in the vicinity of the sill can be modeled

as a body force proportional to the velocity divi.ded by the local

time-mean depth. Such a dissipation term is most influential over

the sill and along the shores of the fjord. Bottom friction in the

usual sense is assumed negligible, as is the Coriolis acceleration

in the first part of the study. The advective terms are also

presumed of secondary importance in the calculation of the dominant

 N ! tidal constituent. After elimination of the velocity the
2 7



equations and boundary conditions governing the spatial distribution

of the elevation are rephrased in terms of a variational problem

that is solved by means of a finite element method. The  constant!

dissipation coefficient is adjusted so that the calculated phase of

the tidal elevation matches observations at three stations along the

inlet. The amplitude of the elevation and the magnitude and phase

of the longitudinal velocity are found to be in good agreement with

all of the available data. The conclusion is that the simple

lineariaed model adequately reproduces the main features of the

dominant tidal constituent in a deep estuary such as Knight Inlet.

h variational principle can also be constructed for the Kelvin

wave problem considered in Chapter 4 ~ i.e., the case where the

Co rial is term is inserted in tbe momentum equation and the dissipation

term neglected. It is important that boundary conditions of dif-

ferent types be consistent at the functions of the boundary segments

along which they are prescribed. Specifically, when rotation is

taken into account, the specification of the tidal height along the

open boundary should include a phase gradient which appropriately

reflects lateral dynamics in order to eliminate a spurious "half-

eddy" across the mouth of the inlet. Several ways of estimating

this a prior unknown phase gradient are discussed. The most

general procedure appears to be a reformulation of the boundary condi-

tion at the estuary mouth, which consists of specifying the surface

elevation at only one point of the open boundary and the direction

of the velocity along the entire entrance. Given the geometrical

configuration of Knight Inlet, it seems reasonable to require that

the velocity be normal to the entrance of the f!ord. This condition

can be incorporated in the variational formulation of the Kelvin
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wave problem. The cross-channel phase difference calculated by

implementing this strategy is consistent with other estimates and

with the value measured at a nearby location. Future work along

these lines could include the consideration of more general boundary

conditions  e. g., spatially and/or time-varying flow direction,

complete specif ication of velocity! and the restoration of the

dissipation term in the momentum equation. A deep and narrow f!ord

such as Knight Inlet does not appear to be an appropriate case on

which to carry out such developments.

At the end of Chapter 4, it is con] ectured that the cross-

channel motions of tidal frequency that are observed in the vicinity

of the sill may be a manifestation of trapped Poincark waves

generated at the sill. If this speculation is valid, such a process

should be relevant to the study of lateral mixing in f]ords, In any

event, the phenomenon deserves further investigation; for a theoret-

ical study, a more schematized geometry  rectangular channel,

single step perpendicular to the longitudinal axis! would be most

appropriate.



APPENDIX A DERIVATION OF

THE VARIATIONAL PRINCI PLES

FOR THE KELVIN WAVE PROBLEM

2 2
f f

V ~ DVH + 8+i � e '  V x DVH! 0 in A  A-I!
g w x

 A-2!with H given on I'>,

aH f aHand � + i � 0 on p2.
Bn v 3t

 A-3!

To construct a variational principle equivalent to  A-1,2,3!, set

-26 J ~ f A-l�H* +  A-l!*6H] dA

D[ A-3�H* +  A-3!*6H] d ,
I

 A-4!

where the asterisk denotes a complex conjugate and the equation

numbers stand for the left-hand sides of the equations. ln view of

 A-2!, one has

 A-5!eH = 6H* = 0 on I'>.

Consider each term of  A-4! separately. The first term can be

transformed as follows:

J  V ~ DVH�H* dA = V  DVH6H*! dA � DVH ~ P6H* dA
A A A

l. Conventional boundary condition

After elimination of the velocity, the spatial distribution of

the free-surface elevation, H, is governed by equations �6! to �8!

of Chapter 4. These equations are



D � 6H* dg � DVH ~ 6VH* dA.
aH
3n

r A

 A-6!

Similarly, the complex conjugate of that term is equal to

&Ha
D � 6K dg � DVH* ~ 6VH dA.

3n
r A

 A- 7!

The second term and its conjugate yield

f 2 f2 2 f2
 H6H* + H*6H! dA � 6 HH* dA.  A-8!

g g

The third term of  A-4! and its conjugate are

i � e ~  V x DVH�H* � e ~  V x DVH*! 68 dA.f f m -z z
A

 A-S!

D   � 6H* + � 6H d raH aH

La. Bn  A-10!

and they cancel the boundary integrals of  A-6! and  A-7!. The

remaining term is successively equal to

i � D � 6H* d . ~ -e i � n x DVH 6H* d f 3EE f
m 31 z lal

EEecause of  A-5!, the contour of the boundary integral in  A-4! can

be replaced by the complete perimetet of the domain. The terms

involving the normal derivative and its conjugate are simply
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-e . i � V x  DVH 68a! dA
f

-t m

f� J i � e  V x DVH! 6H» dh
m t

+ J i � e ~  DVH x V6He! dA. h-ll!f
m t

i � De '  VH x 6VH+ - VH* x 6VH! dAr f
A

i � De .  VH x 6VHe + 6 VH x VH*! dA
f

A

6 J i � De  VH x VH*!f
-z  A-12!

Summing the contributions  A-6! to  A-12!, one obtains

2 2
-2 6j ~ 6 -DVH ~ VH* +  m � f

HH*
g

+ i � De  VH x VH*! dh
f
hl z

Upon substitution of H ~ b + is, equation  A-13! leads to equation

�4!, i.e.,

2 2
3 = J �  h + h + s + s !  h + s !D 2 2 2 2  m. f ! 2 2

J 2 x y x y 2g
A

+ � D  s h -h s ! dA
f

xy xy  A-14!

the first term of  A-ll! and its conjugate cancel  h-9!; the second

term and its conjugate yield



2. Modified boundary condition

Consider now the problem defined by equations �6!, �7!, and

�1! of Chapter 4, i.e.,  h-l!,  A-3! and

i}H   l 38� +i � � Oon
an f ai 1

with H specified at one point on T
I  A-15!

An additional boundary integral should be added to equation  A-4!,
which becomes

-2Q ~ [ A-1! 68+ +  A-1!*6H] dA
A

D[ A-3! 68* +  A-3!*68] dg

D[ h-15�8+ +  A-15!*68] dg
r,

 A.-16!

2 2
 A-10! +  A-ll! - i D � 68* � � 68 dE

Ea!f 3 t Bt

 A-1 7!

The final expression corresponding to  A-13! becomes

2 2
-2'  'J -D h + 1 + s + s ! + ~  h + !

x y x y g
A

-2 �  sh-hs! dA
fD

 U xy x

+ 2 f -~ � 6h � � 6s d4
F!

 A-18!

and leads directly to equation �2! of Chapter 4.

The ares integral is again equal to the sum of  A-6! to  A-9!. The

two contour integrals can be combined to yield
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