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ABSTRACT
L

Tidal motion in semi-enclosed basins is essentially periodic.
Hence, the solution of the shallow water wave equations in Fourier
space {or in terms of harmonic constituents) can be an efficient
alternative to the conventional time-stepping procedures. A numerical
method based on that premise is described; the method combines varia—
tional calculus, an iterative scheme, and the finite element method to
determine the spatial variations of the Vourier coefficients of water
height and depth-averaged herizontal velocitfes. The elimination of
the velocities from the continuity equation, either analytically or
in an iterative procedure, yields a Helmholtz-type partial differen-
tial equation for the free-surface elevationm.

A simplified version of the procedure (linear equations without
the Corioclis acceleration) is applied to Enight Inlet, British
Columbia, a long, deep, narrow, steep-sided fjord. The extraction of
tidal energy through internal mechanisms associated with the flow over
the sill is represented by a body force proportional to the depth-
mean velocity divided by the local time-mean depth. Computed results
for the semidiurnal barotropic tidal flow agree fairly well with all
available observations. An attempt to solve the same problem with a
conventional time-stepping procedure demonstrates the efficiency of
the harmonic approach.

When the Coriolis term i1s retained in the momentum equation, the
a pricri specification of a dynamically consistent surface elevation
across the open boundary is difficult., Therefore, a different
boundary condition (specifiéation of flow direction along the mouth
of the estuary, and of tidal height at one point thereon) is proposed

and incorporated in the variational formulation of the Kelvin wave
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problem. The strategy provides a means to eliminate a spurious "half-
eddy" produced across the open boundary by inconsistent conditions;

it also results in a cross-channel phase difference at the mouth that
is consistent with other estimates and with the value measured at a
nearby location. It is conjectured that Poincaré waves generated at
the sill and decaying away from it might be reaponsible for the aig-

nificant cross-channel motions observed in the vicinity of the sill.
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1 INTRODUCTION
.

The theme of this study is the problem of calculating the
motion induced by oceanic tides in semi-enclosed basins such as
bays or estuaries; this is a time-dependent, boundary-value
problem over a finite spatial domain. Attention will be restricted
to situastions where depth-~averaged equations of motion can be
regarded as adequate or their solution informative. The problem
is then defined by the conventional set of vertically-integrated,
time-dependent equations expressing conservation of horizontal
momentum and mass in two dimensions. Appropriate conditions are
prescribed along the shoreline boundaries and across the mouth of
the estuary.

Over the past two decades, the availability of ever faster and
"larger" digital computers, together with the development of novel
numerical techniques, has opened many avenues of research for
scientists and engineers concerned with the computation of tidal
motions in coastal zones. A number of procedures has been estab-
lished to solve, approximately, the classical set of shallow water
wave equations for basins of realistic geometrical and topographical
configurations. The most conventional approach utilizes a time-
stepping procedure to handle the discretization of time in the
governing equations. Spatial discretization schgmes based on finite
difference theory have been used by the pioneers of the field
(e.g., Hansen, 1956; Brettschneider, 1967; Leendertse, 1967) and
their many followers (e.g., Heaps, 1969; Ramming, 1976; Ronday,
1976; Maier-Reimer, 1977; Crean, 1978). More recently, the finite
element method of spatial approximation has also been implemented

in tidal flow calculations (e.g., Grotkop, 1973; Connor and Wang,
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1973; Taylor and Davis, 1975; King, Norton and Tceman, 1975;
Brebbia and Partridge, 1976; Gray, 1977; Walters and Cheng, 1978).
In both cases, the problem is reduced to a system of first-order
ordinary differential equatioms involving grid point or nodal
values of the unknowns and their derivatives with respect to time.
A considerable amount of attention has been devoted to the problem
of devising time-stepping schemes that enmsure the basic stability
of the scheme as well as its accuracy (e.g., Ronday, 1976; Gray
and Lynch, 1977). Some ingenious methods have been proposed and
many applications have achieved a rather convincing degree of
success. However, from a computational point of view, a common
feature of the time~-stepping procedures is that they are fairly
expensive, even by today's standards, especially in deep bodies of
water where initial transients are not rapidly damped by friction
and/or radiation. An alternative approach is clearly dasirable.

The time-stepping approach to the solution of time-dependent
equations is appropriate when the response of the system under study
is truly of a transient nature (e.g., storm surges or tsunamis).

The same can be said of the method of characteristies, which is
discussed, for instance, by Dronkers (1964). However, the tidal
response of coastal waters was known to be predictable to a large
extent due to its repetitive character long before a scientifically
plausible explanation of the phenomenon was put forward. {As noted -
by Darwin (1898, p. 76), ancient Chinese writers considered water
the blood of the Earth, and the tides the beating of its pulse.)
Large-scale tidal motions are essentially "periodic” because they

are due to the combined attractions of the noon and the sun on the
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waters of the oceans; thelr coastal manifestations are also 'periodic,”
usually with the addition of higher harmonics excited through

various nonlinear mechanisms. This premise is the foundation of

much theoretical (analytical) work concerning tides; it is also the
basie of an approach to practical computations in which time is
eliminated as an independent wvariable.

In the late 1860's, building upon the work of Newton, Bernoulli,
and Laplace, Thomson (Lord Kelvin) proposed the theory of harmonic
analysis of the tides based upon the development of a sum of periodic
terms. The harmonic or Fourier method has been used ever since
in the analysis of tidal data and the construction of tide tables,
Also, the numerical solution of Laplace's tidal equations over large
domains (i.e., the computation of oceanic wave motion directly
induced by astronomical forcing) is usually carried out in terms
of the major tidal constituents (see Hendershott, 1977, for a
recent review): the hyperbolic tidal equations are thereby
reduced to a system of elliptic equations. The implementation of
the harmonic method in the calculation of tidal motions in coastal
waters and rivers is discussed by Schonfeld (1951) and Dronkers
(1964), the latter giving special attentfon to the linearization
of the quadratic resistance term of the momentum equation. Until
recently, however, the method of spectral decomposition seems not
to have been extensively used in conjunction with numerical techni-
gues to solve the shallow water wave problem in two horizontal
dimensions, with boundary forcing. Pearson and Winter (1977) form—
ulated an approach to tidal computations that combines the use of
Fourier analysis, an iterative technique, variational calculus, and

the finite element method. At the same time, Kawahara and his co-
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workers (1977, 1978) applied the so-called "Periodic Galerkin Finite
Element Method" to the same problem, resorting to either a pertur-
bation or an iterative method to linearize the equations. Le
Provost and Poncet (1978) started with a harmonic, rather than
Fourier, deccmposition of the solution, linearized the frictiomnal
term and used a finite element method to solve a variationél princi-
ple equivalent to the resulting elliptic equation. Suyder et al.
{1979} also chose the harmonic representation for their (finite
difference) model and they handled the coupling of the various
congtituents by means of an iterative acheme. In conclusion, the
elimination of the time variahle by apectral decomposition of the
equations of motion constitrutes a sound and attractive altermative
to the conventional approach.

In the next chapter, the computational procedure proposed by
Pearson and Winter {1977) and the simpler linear veraion described
by Jamart and Winter (1978) are summarized. Chapter 3 1a devoted
to a discussion of the application of the linear procedure to Knight
Inlet, a long, deep, narrow, steep~sided fjord with relatively
shallow sills located in British Columbia, Canada. Model results
are compared to available field data, and an attempt te use a con-
ventional time-steppilng procedure to compute the tides in Knight
Inlet is briefly described. In Chapter 4, certain problems which
arise when the Corlolis term is restored in the equation describing
the conservation of horizontal momentum are discussed. Finally,
conclusions and suggestions for future work are set forth in

Chapter 5,



2 FINITE ELEMENT SOLUTION
OF THE SHALLOW WATER WAVE
EQUATIONS IN FOURIER SPACE

The equations governing barotropic tidal motions in estuaries

are the well-known set of vertically-integrated, time-dependent
equations expressing conservation of horizontal momentum and mass
in two dimensions [see, for example, Leendertse (1967)]. 1In ics
most general formulation, the momentum equation includes convective
acceleration, Coriolis acceleration, and terms describing the effect
of wind stress and bottom friction. The equation expressing the
conservation of mass is also nonlinear., The conventional condition
on Pl, the seaward boundary of the estuary is the specification of
the free-surface elevation as a function of time and position; it
is assumed in this and the next chapter that such specification is
indeed possible. Along the shoreline, denoted by Pz, the normal
velocity is prescribed {(usually zero, except when river runoff is
included). This chapter consists of a review of the approach pro-
proposed by Pearson and Winter (1977) for the solution of these
equations, and of the simpler version of that procedure subsequently
developed by Jamart and Winter (1978).

The computational method described in the first of these papers
is applicable to the general formulation of the problem. The sim-
plified version of that procedure is appropriate for cases in which
Coriolis and advective accelerations and wind stress can be neglected
and the frictional force assumed lirear. In both cases, the assump-
tion is made at the outset that the solution is periedic in time.

Therefore, the dependent wvariables [g(x,y,t), the depth-averaged
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velocity, and z(x,y,t), the free-surface elevation above mean sea
level] can be Fourier decomposed. Let w be the fundamental circular
frequency of the motion and let N denote the number of modes required
to describe the temporal variation of the variables. By introducing

in the time—dependent equations of motion the serlies expansioas

N
u = Re 3 U_(x,y)e ™F 1)
n=0
N
¢ =Re3 B (x,y)e ™, @
n=0

the governing equations are replaced by a set of modal equations of

the form

—inal  + gyH_ = fn(l) (3

- ] -y (@
e+ 7 (DU)) v » (4)

where D(x,y) 1s the time-mean depth, g denotes the acceleration due
to gravity, and V is the gradient operator. The variable fn(l) is
defined as the n—th complex coefficient of the Fourier series of the
sum of all the terms retained in the momentum equation but two: the
local acceleration and the pressure gradient term. In a similar
fashion, ¢n(2) represents the n—-th Fourler coefficient of the non-
linear term of the continuity equation. In both procedures, these
variables are handled by means of an iterative schewe, i.e., they are
considered known functions of position at eachstep of the calculations.
In the method of Pearson and Winter, the distinct modal equations

are coupled through the ﬁn's due to the presence of the nonlinear
terms. Many anthors have discussed the 1inearization of the term

representing bottom friction in the shallow water wave equations
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(e.g., Dronkers, 1964, p. 271 et seq.; Ippen and Harleman, 1966,

p. 504). In the simplified approach of Jamart and Winter (1978), the
frictional force is assumed to be proportional to the velocity
divided by the local time-mean depth; with E denoting a (constant)

dissipation coefficient, we have

v

E
" oY, (5)

(2) _
tbn =0 , (6)

so that there is no coupling between harmonics. Fourier decomposition
is also performed on the boundary equations. If the shoreline

boundary is impermeable everywhere, this leads to
Hn(x,y) given on T, {7
s (8)

where n is the outward-directed unit normal vector. The next step
in both procedures consists of eliminating gn between (3) and (4)
to derive a (complex) Helmholtz equation for Hn' In the linearized

version, we get

2 2

n w H = - inwE 5
n gh n

2
E + inwED
- 7, T, (9)

2
E +nwbD

Y- (OVH) +

and the boundary condition condition (8) becomes

aHn
- OonrT, . (10)

Pearson and Winter's equation for Hn has a right-hand side that cannot
be evaluated analytically and is therefore treated mumerically

throughout the iterative procedure. For each mode, the complex
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problem is rephrased in terms of a variaticnal principle that is then
solved by means of a finite element method. The same strategy is
adopted in the simplified version because the complete equation (9)
appears not to be amenable to a variational formulation due to the
form of its right-hand side term. Furthermore, in order to faci{litate
the handling of a large number of nodal points on the computer,

equation (9) {s separated into its real and imaginary parts, setting
Hn = hn + 1sn . (11)

This leads to a pair of non-homogeneous (real) Helmholtz equations.
Each problem is then recast in terms of the well-known corresponding
variational principle: for instance, if Fn denotes the real part of

the right-hand side of (9) and A the area enclosed by I', and rz, hn

H

is given by
2 2 2 ’
5 (%]vh[ -2 %"+ Fh jda=0 |, (12)
A ~'n 22 n nn
for all Ghn vanishing on I'y. The forcing term Fn is a functional of
ds ds
D, hn’ —32. and-—5$; it is known in the sense that its value Is esti-

mated from the results of the previous iteration. A standard finite
element method is used to obtain the approximate solution of each
variational problem. After convergence of the iterative process has
been achieved, the Fourier coefficients of the velocity, gﬁ; are
computed from equation {3).

The linearized version of the approach just described is somewhat
easler to implement on a computer than the more general version for

several reasons. First, it does not imvolve coupling between the

different modes of the sclution, thereby alleviating storage require-
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ments. Second, the calculation of the velocities (1.e., essentially
the derivatives of the free-surface elevation) 1s not needed during
the iterative process but only after convergence is achieved; this
is an advantage as long as linear basis functions are used to describe
the elevation, Moreover, the same coefficient matrix is used for the
determination of hn and 5.0 and the matrix decomposition need be done
only once hecause only the right-hand gides are updated iteratively.
In the next chapter, the utility of the simplified procedure in
specific situations is evaluated by means of an application to a deep
fjord. Because only one Fourier mode of the total response will be

considered, the subscript n will be omitted hereafter.



3 APPLICATION TO KNIGHT INLET

|
INTRODUCTION

Knight Inlet (Figure 1) is a long, deep, narrow flord with steep
sides and relatively shallow gills. 1t is located on the southern
malnland coast of British Columbia, Canada, its mouth facing the
northern part of Vancouver Island. The general characteristics of
Knight Inlet have beean described in detafl by Pickard (1956, 1961)
and Pickard and Rodgers (1959); these authors consider Knight Inlet
typical of fjords along the British Columbia Coast. Knight Inlet is
more than 100 km long, and it has an average width of about 3 km.

It has two sills: an outer threshhold located 10 km west of Montagu
Point, and an inner one lying between Hoeya Head and Prominent Point.
The latter sill has a maximum depth of about 63 m and separates a
very deep inner basin (maximum depth of 550 m) from a somewhat shal-
lower (= 200 m) outer basin. The inner sill 1s located near the
middle of a fairly long straight section of the fjord. Because its
topography is relatively simple, this segment of Knight Inlet was
chosen as the site for extensive field programs (Smith and Farmer,
1877; Farmer and Smith, 1978; Freeland and Farmer, 1980). The

main reason and incentive for the initiation of tidal modeling in
this particular inlet was the prospect of comparing model calcula-
tions with reliable field data. It also seemed desirable to
determine the usefulness of the linearized model in a deep fjord
with a rather shallow sill.

At times of high freshwater runoff, Knight Inlet becomes strongly
stratified, and the phenomena associated with the density structure
have been the focusof the investigations just menticmed. Of parti-

cular relevance to the present attempt to compute the barotropic




[ 0
[ S W I
[1.]

DEFTH W FATHOWS

Figure 1. Map of Enight Inlet, British Columbia. The inset shows
the fjord's location on the British Columbia coastline.
The dota in the srraight reach indicate locatioms where
tidal currents have been red; the bering of the
stations is consistent with traditional notations employed
in Knight Inlet.

tidal motion is a point made by Freeland and Farmer (1980):

namely, that a significant portion of the tidal energy appears to be
extracted in the sill region through certain internal mechanisms
which result in the formation of internal solitary waves (Smith and
Farmer, 1977; Farmer and Smith, 1978; Maxworthy, 1979). An accurate
parameterization of those complex intermal phenomena, for use in
vertically-integrated equations of tidal motion, is probably not yet
possible and certainly beyond the scope of this study. (A quantita-
tive description of such "dissipation" as a function of time would
require careful consideration of, at least, velocities and hence

amplitude of the tide, vertical shear, and nature and stremgth of
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stratification; also it would probably involve "switcﬂes" to allow
for episodic occurrences of instabiliries and sudden changes in the
flow regime). However, there appears to be no compelling reason why
this type of dissipation should be modeled by the classical quadratic
friction law.

Ag a first approximation, the working assumption 1s made that,
in tidal computations, the internal energy dissipitation could be
modeled by the "frictional" term of equation (5). This term acts as
a body force and it has the property that the "momentum sink" is
maximum over the sill where the mid-channel depths are shallowest
and where, from mass continuity alone, one expects the velocities to
be largest. The dissipation coefficient, E, is adjusted so as to
best approximate what is known about the change of phase of the tidal
elevation along the inlet.

In the sections which follow, the finite element discretization
of Knight Inlet is described first. Next, the adjustment of E is
discussed, and the computed results are presented. Then, the model
results are compared with available field data. The next section is
devoted to some numerical considerations. Finally, an attempt to use
a time-stepping procedure to solve the same problem is reported.
SPATIAL DISCRETIZATION

The finite element grid which was first used for Knight Inlet
(Figure 2) extends from Protection Point to the head of the inlet.
The grid is composed of 1584 triangular elements (997 vertices or
nodal points), and the variables (h and s) as well as the depth are
assumed to vary linearly over each triangle. The shoreline boundary
follows the 5 fathoms (= 10 m ) contour. Figure 3 shows the topo-

graphy of Knight Inlet after digirization {the contouring program
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Figure 2. Finite element grid used in first phase of calculation

of barotropic tidal flow in Enight Inlet (after Jamart
and Winter, 1980).
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that generated this plot uses linear interpolation between depth
data at the nodal points).

A second grid was constructed because the velocity field obtained
with the first grid lacked smoothness in the sill region, especially
at times close to the ebb-flood transition, thereby indicating the
need for better spatlal resolution in that area of rapid variations.
The refined grid (Figure 4) covers a portion of the straight reach
that includes the sill, and it was geperated by joining the mid-side
points of the original triangles; the element demsity is thereby
quadrupled. An algorithm designed to winimize the bandwidth of the
algebraic problem was used to number the nodes of the refinmed grid.
An alternative mesh refinement scheme (joining the vertices of each
triangle to the centroid) was judged unsatisfactory because it led
to rather small angles. The new grid has two open boundaries (see
Figure 2) and the motion in the interior of the domafn is driven by
specifying on those boundaries the elevations computed with the
coarser grid. The depth values at the additional nodal points are
linearly interpolated from the first grid's data so that the acrual

mean volume of the section remains unchanged.

ADJUSTMENT OF THE DISSIPATION COEFFICIENT

In order to study the effect on the solution of varying the dis-
slpation coefficient, E, a number of runs was made for a wave of
amplitude (h2 + sz)Li =2 m on I, and of period Tp = 12.5 h. Those
experiments showed that the calculated phase difference in elevation,
A ¢, between the head of the inlet and the open boundary of the model,
Pl, is almost lipearly proportional to E, at least up to a value of

E=5x 10—2 o sec—l (see Table 1, col. 2). Moreover, the longitu-
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Figure 4. Fine resolution finite element grid for cowputations in the vicinity
of the sill (after Jamart and Winter, 1980}.
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dinal distribution of ¢ relative to rl shows a very abrupt change of
slope in the sill region {see Figure 7b for a typical profile of ¢).
Consequently, the delay observed at the head of the fjord (relative
to H) iz caused mainly by the dissipation occurring over the sill
(i.e., the linearized model formulation does provide the intended
parameterization of the physics).

This last result is consistent with the tide gauge data described
by Freeland and Farmer (1980), who analyzed long—term records
obtained at three locations: Montagu Point (a few km west of F}),
Siwash Bay, and Wahshihlas Bay (see Figure 1), hereafter referred to
as M, S, and W. At tidal frequency Hz’ the observed phase difference

between Siwash Bay and Montagu Point, &. — ¢ fluctuates between

S M’
values of 0.75° (January) and 1.7° (June) whereas the difference
between Wahshihlas Bay and Siwash Bay, %q - ¢§’ remains smaller than
0.25%°. The statistical significance of such estimates is discussed

by Freeland and Farmer (1980). The large discrepancy between these

phase differences will be reflected in estimates of energy dissipa-
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tion rate over the straight section and the sinuous reach and this,
indeed, is one of the main arguments that led Freeland and Farmer

to the assertion quoted in the introduction to this chapter. The
phase observations canbe well simulated in the computations by selecting
an adequate value of E, as shown by columms 3 (QS -~ ¢r1 = ’S - '#H)
and 4 of Table 1. These phase differences are computed for an M,

wave whose amplitude on rl is different from the observed one but
they are independent of that amplitude. Therefore, the cholce
E=1x10" msec’ ylelds a good approximation of the average

phase observation.

Table 1: Calculsted phase differences and number of iterations
for various values of the dissipation coefficient.

E L. .S - ."1 ‘H_.S Number of

(m set::_]I ] {degree) {degree) (degree) Iteratione
0 0 0 i} 2

1x 107" 0.480 0.411 0.065 3

6 x 107" 0.877 0.749 0.119 6

1x 1077 1.37 1.17 0.19 10

1.5x 1072 1,97 1.69 0.26 16

1y 107 3.74 3.24 0.46 26

5 x 107 6.07 5.29 0.72 28

RESULTS

The most striking features of the results occur, as expected, in
the neighborhood of the sill. BHowever, unlike the lomngitudinal dis-
tribution of the phase described above, the other two main features
of the solution are present fer all values of E, including E = 0. The
first characteristic §s a rather large increase in the magnitude of
the current speed and 1s shown, for example, in Figures 5 and 6, where

the velocity vectors in the sill region are plotted on a scale differ-
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ent from that used for the other parts of the inlet. (Note that the
scales also differ from figure to figure.) In those figures, as well
as in subsequent displays of the velocity field, the parameter «
denotes the non-dimensional time, a = t/TP; the time origin was

chosen such that ¢ is maximum on Ty at a = 0.125 for computational
reasons discussed in "Numerical Considerations."” The variation of
mean current speed with depth is merely a consequence of the continuity

equation: neglecting spatial variations in H, the one-dimensional
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Figure 5. Velocity vector field calculated on the global
grid at a = 0, i.e., one-eighth of a period before maximum
tidal height at the entramnce.
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equivalent of equation (4) that shows that [U| is inversely proporticnal
to the depth D.

The second feature of the solution over the sill is the surface
manifestation of the velocity increase, namely, the presence in that
region of a relatively large longitudinal gradient in the magnitude
of the elevation. This feature spans only a few elements of the
global grid, but the same "bump" is present when the calculations
are perfor;ed on the refined grid; therefore it is unlikely to be a
numerical artifact. Figure 7a shows the profile of (h2 + sz)Li for
a wave of amplitude 1.5274 m on T and of period 12.5 h, computed
wigh E = lxlﬁ-z m sec-l but indistinguishable, on this scale, from
the solution for E = 0. The shape of the solution can also be ex-
plained in terms of a partial wave reflection due to the sill (M.
Rattray, Jr., personal communication). Figure 7b shows the
corresponding distribution of phase relative to Pl’ a profile dis-
cussed in the previous section; obviously, there is no phase change
in the elevation for the case E = (0. The depth profile along the
same mid-channel axis is included in Figure 7c¢ for reference. Over
most of the tidal cycle, the free-surface profile defined by Figures
7a and 7b is characterized by an inflection point near the sill.
However, at certain times (about one—eighth of a period after the
time of maximum currents) there appears a local maximum or minimum
in elevation centered at the sill; as an example, Figure 7d shows
the shape of the free surface at a = 0, i.e., one—eighth of a period
before high tide on rl.

As a consequence of the inclusion of a depth-related dissipa-
tion térm in equation {(3), side effects are, defacto, modeled due

to the extreme steepness of the fjord's banks. Durieg periods of
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unidirectional flow, the relative shallowmess of the boundary
elements is responsible for a marked shéér on both sides of cross—
secticnal velocity profiles. The progressive decrease in the
magnitude of the velocity near the solid boundary can be observed
in both Figure 6 {velocity vector field at o« = Q) and Figure 8

(axes of the tidal ellipses). The magnitude of that shear increases,



oo g

1

METERS MORTH

HETERS NORT= OF SC DEG. 38 MIN. W,

:

:

g

TSR WAGEITT SCMi . WD

N o

L LT R CTIE L B L N (4

§ § & @
)
!

%.l.- 100 V000 e 1
LD JILE o T T 1N

[reer)
a m

maimn 310 T WL

{(a)

:

g

:

- [ B [+
’-'il e 13- ELLIPSES TN e OnT IRLEY
- Nl PY. ‘AT E:
L FROTECT IO 1. e mmm e s [
1] 5000 10000 15000 20000 25000 30000 35000 40000 45000

METERS FAST OF 126 (X (5. 17 HIN. H.

WELOCIIY SCML. Al

[vewe)
[ ]

AL I M1 LD - MeSEL

(b)

Fonbami Pl LIPS | RG] [MED
L:14-7
s000  loooo 45000 20000 75000 30000

HETERS ERST OF 126 DEG. 12 AIN. W.

(RCEAT WELOCTT S0ALE. WML

LAl
1] 3.00

MR WEERT SPEED - R AVED

E-).E-2

{c)

% 1 3 (L] 15000 19X 1'% L]

Figure 8. Azmes of the My tidal ellipses 1in Enight Inlet,
calculated with a dissipation coefficient E = 1 x 102 m mec™),
#) coarse grid

b) refined grid, straight reach
c) refined grid, sill area




22

of course, with increasing E. Also, the larger resistance asso-
clated with the boundary elements produces cross-channel variations
in phase {(the tide "turns'" first along the edges) that result in
the formation of eddies during the ebb-flood transitions. This is

illustrated in Figures 9 and 10 which show the tidal current pat-

terns shortly after high tide.

COMPARISON WITH AVAILABLE DATA

Moast of the results from fleld measurements referred to in this
gection have not, as of this writing, been published; they were
kindly communicated by Drs. G.A. Cannon and H.J. Freeland who not
only collected and analyzed the data but also contributed much to
their interpretation.

Three basic limitations hinder somewhat the so-called model
valldation process. The first stems from the decision to teat the
usefulness of a purely linear model. In particular, the character
of the solution in the area of the sill suggests that the convective
acceleration term may not be negligible in that region; however,
this drawback is intrinsic to the nature of the exercise. The
second limitation 1s related to the objectives of the field programs
recently conducted in Knight Inlet, viz,, the study of the internal
phenomena associated with the flow of a stratified fluid over
rugged bottom topography: part of the resulting data set does not
possess a sufficient temporal and spatial coverage to allow the
accurate calculation of the depth-averaged tidal velocitiea. The
third difficulty is one of data interpretation; unamely, the problem
of extracting from the total (measured} motion that component which

is the object of the modeling attempt. In spite of these limita-
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tions, enough information is available to assess the general validity
of the model.

In this section, attention is restricted to the tidal constit-
uent which is dominant in Knight Inlet, i.e., the principal lunar
semidiumal (MZ) tide. Comparisons similar to those reported here
between observations and model results at the diurnal frequency show
the same degree of general agreement. The following comparisons
are also restricted to the up- and down-inlet component of the
velocity; the transverse component of current will be discussed in
Chapter 4. Lastly, it should be pointed cut that all the figures
displaying the velocity field correspond te results cobtained for a
wave of amplitude equal te 2 m at the open boundary, whereas the
measured elevation at the M, frequency is 1.5274 m (Freeland, per-
sonal communication; this value was obtained from the harmonic
analysis of a one year-long time series at Montagu Point); the
"calculated speeds" quoted in this section correspond to the
measured forecing.

Free-Surface Elevation

As described in "Adiustment of the Dissipation Coefficient," tidal
elevations have been recorded at three locations for more than a year.
In the same section the adjustment of the model was discussed; i.e.,
choosing E g0 as to simulate the "average" phase information for the
Hz tide deduced from the weasurements. The H2 amplitudes computed by
Fagt Fourier Transform of eight 29-day time series are in the following

ratios (M designates Montagu Point, S Siwash Bay, and W Wahshihlas Bay):

W/s S/M
mean 1.0138 1.0276
minimum 1.0127 1.0263

maximum 1.0153 1.0284
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With E = 1 x 10 “msec ', the computed value of W/$ is 1.0139 and
agrees very well with the observed mean value; however, the calcu-
lated ratio S/M has a value of 1.0351, somewhat larger than the
observed ones. Hence, it cannot be said that the "bump" asscciated
with the sill in the profile of the computed free-surface amplitude
(Figure 7a) is confirmed by the observations, Tide-gauge measure-
ments at sites much closer to the sill would be needed to answer
that question. Such data would also be useful in judging whether
or not the phase difference observed between the two extremities of
the straight reach 1s concentrated over the 8ill as shown in the
calculated profile of Figure 7b,

Depth-~Averaged Iongitudinal Velocity

Figure 1 shows the locations for which some information on
barotropic tidal transport 1s presently available. (The numbering
of the stations is consistent with the traditional notations
employed in Knight Inlet.)}

At the westernmost station, number 3, Freeland {personal commun-
ication) estimates that the barotropic depth-mean velocity at the M2
frequency 1s approximately lé:nnsec_l and precedes the elevation by
about 870; the computed magnitude and phase, ‘with E=1x 10_2111 secﬁl .
are about 15.5 cm Sec_land about 85° for awave of amplitude 1.5274 m
on T). Freeland's estimate is based on the amplitude and phase of
the M2 velocity observed at only two depths (15 m: 12.68 cm sec_l,
—111.050; 100 m: 14.36 cm sec_l, —92.010); he uses the Msf data at
three depths to calibrate the shape of the first baroclinic mode and
subtracts the internal mode from the observations. The accuracy of
such "measurement” is difficult to assess, but the agreement with

the model results is satisfactory.
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The amplitude of the barotropic MZ velocity at station 5 can be
deduced vectorially from the two pairs of current observations
nade by Cannon at stations SN and SS. The resulting value of
9.2 cm sec ' is exactly the same as the calculated velocity at
mid-channel; no phase measurement with respect to elevation is
available. The baroclinie {residual) components of the fluctuations
recorded by those four current meters suggest the presence of a
standing Iinternal Kelvin wave (Freeland, personal communication).

Attempts to estimate the depth-averaged velocity from the four
instruments moored at station 4 have not been successful. tHowever,
the model result, approximately 7.5 cm sec-l, is comparable to the
observed longitudinal speeds (8.32, 7.90, 5.49, 7.50 cm sec_l at 65,
125, 300, 363 m respectively).

The only information presently available on the magnitude of
the tidal currents over the sill (station 3%) comes from the measure-
ments reported by Pickard and Redgers (1959). As these authors
emphasize, the accuracy of their observations is greatly affected
by many uncertainties due, among other things, to the natural
variability and complexity of the flow and to ship motion. Moreover,
no time series analysis of the data is possible because of their
limited duration. However, the usefulness of Pickard and Rodgers’
measurements can be tested by comparing their results for station 5
to the more recent data for the same location. With a tidal range
of about 4 m, they report a mean range of longitudinal currents of
about 30 cm sec” ' at 200 and 300 m and about 24 cm sec ! at 100 and
50 m. These can be roughly converted to mean velocities of 11.4 and
9.2 cm secwl,respectively,for a2 wave of amplitude 1.53 m, which are

very close to the value of 9.2 o seq:“l mentioned earlier. Appli-
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cation of a similar conversion at station 3%, where a range of
speeds of 150 cm sec ' was observed at a time when the tidal range
was about 5 m, ylelds an estimate of 45.9 cm sec ' for the M,
velocity at that location; the closeness of the calculated value
{(46.7 cm sec_l) is, of course, fortuitous, but it confirms the
overall pattern of fair agreement between observations and model
results.

Lastly, no current measurements were made close enough to the
lateral boundaries of Knight Inlet to provide evidence for the side
effects discussed at the end of the previocus section, but the occur~
rence of such effects has been reported for other steep-sided
channels. Thomson (1976, 1977) concludes from his study of currents
in nearby Johnstone Strait, a fjord-like narrow tidal channel along
the northeastern side of Vancouver Island, that "the M, constituent
(exhibits) cross-channel symmetry with respect to phase in which the
currents in the central part of the strait (lag) those at either
shore by approximately 30° (21 hour)." The phase gradient is
steepest in fairly narrow zones (a few hundred meters) on both sides
of the channel. The transverse phase gradients that were calculared
in the case of Knight Inlet are comparable to those observed in
Johnstone Strait (for Instance, in the vicinity of station 3, the
calculated velocity along both shores leads that in the central part
of the inlet by about 400); those phase gradients and the related
shear in the magnitude of the tidal velocity are concentrated along
the boundary. A similar phase lead along a lateral boundary has

also been observed in Hood Canal, Washington, by Shi (1978) who

remarks that "it is similar in mechanism to the Stokes oscillating

boundary layer in a (viscous) flow." In the case of Hood Canal, the



magnitude of the tidal velocity decreases markedly near the shore.
The conclusion drawn from such admittedly limited comparisons
with field data is that the simple linearized model appears to be
capable of reproducing the main features of a given tidal constituent
in a deep estuary such as Knight Inlet, regardless of the exact
nature of the internal dissipation processes.
NUMERICAL CONSIDERATIONS
As mentioned in Chapter 2, the numerical procedure adopted
to solve, with an iterative scheme, the equations corresponding to
the real and imaginary parts of equations (%) and (10), 1s basically
the same as that reported in Jamart and Winter (1978). As a practi-
cal definition of convergence, it was decided to terminate the
iteration loop when the relative change between successive estimates
of both variables is smaller than a given tolerance, £, at all nodal
points. An important modification of the procedure concerns the
boundary condition at the mouth, and, specifically, the partitioning

of the amplitude of H, [H| = (h? + sz)¥

, (recall that H=th + is
or £ = h cos wt + s sin wt) between h and s. The computational
scheme is faster when |H| is equally distributed between h and s

than when only one variable is "excited” on T For instance, with

1
£ = 10‘“ (and E = 3 x 10_3 m sec-l), convergence is achieved after
five iterations if h = s = ¥2 m at the open boundary, while it
takes fourteen iterations for a similar run with h = 2 m, s = 0 on
Pl to converge. On a Cray-l computer, the latter run requires
5.25 CP seconds and the former 2.60 CP seconds. [These numbers,
incidentally, give some indication of the speed of the Cray-1

computer: the constructlon of the basic matrix of the algebraic

system expressing the discrete approximation to the variational
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problem (a rectangular 997 x 35 matrix) and its LU decompositiocn

for Gaussian elimination take little more than one second of CP
time.] The outcome of this comparison might be different if the
convergence criterion dealt with the absolute rather than the relative
change between successive iterations.

Two other factors influence the number of iterations needed to
satisfy a given convergence criterion: they are the value of the
dissipation coefficient, E, and (to a lesser extent) the number of
Gaussian points used in the numerical integration of the (monlinear)
"forcing terms" on the right-hand side of equation (9). Column 5
of Table I shows how the number of iterations {(with ¢ = 10_H) varies
with E. The last two numbers in Table 1, cerresponding to
E=3x102 and 5 x 1072 m sec” !, should be qualified by a question
mark: they indicate the number of {terations after which successive
estimates of h and s vary between two "constant" values (six signi-
ficant digits}, apparently without further convergence until the
40th iteration, when the computation is terminated. The relative
change between two successive i{terations is everywhere smaller than
3 x 107" so that this puzzling behavior does not serlously affect
the accuracy of the results.

For the problem defined by equations (9) and (10), the conver-
gence of both varilables towards their "stable"” value 1is oscillatory
with a period of two iterations and the upper and lower envelopes
are monotonic after the first few iterations. Hence, the conver—
gence of the iterative process can be accelerated in this case by
using as the current value of the unknowns the mean of the last
two estimates. However, the character of the convergence is differ-

ent when other terms of the governing equarions are considered. For
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instance, the convergence Is asymptotic rather than oscillatory for
the "Kelvin wave equations” discussed in Chapter 4. Therefore, it
appears that extrapolation schemes to accelerate convergence should
be designed on an ad hoe basis.

S8ix different formulae for performing the numerical integration
of the forcing terms have been compared. The programming and the
numerical values of the various coefficients and weights were checked
by running the computer program for a flat bottom case; the forcing
terms are then linear functions of position so that the integration

should be "exact,"

except for round-off errors. The numerical
experiments show that four formulae yield essentially the same
results at the same cost, and, for a tolerance ¢ = 10‘“, the itera-
tive acheme converges in 3 fterations. They are given by Strang

and Fix (1973, Table 4.1) and denoted (a) 13-point formula, degree
of precision 7; (b) 7-point formula, degree of precision §;

{c) 6-point formula, degree of precision 3; and {(d) 3-point formula,
degree of precision 2, all three points being inside the triangle.
[Note that there is a misprint in the first weight of (b) and in the
last area coordinate value of (a)] The 3-point formula that involves
the mid-side points requires five iterations and 1s rather inaccurate
(e.g., it gives a phase difference over the total length of the inlet,
4¢, equal to 0.6010 for E = 3 x 10—3 m s&c:_l and € = lO_Q, whereas
the 13-point formula yields A¢ = 0.&800). If the integration scheme
uses the nodal values of the forcing functien, the iterative procedure
diverges in the case of Knight Inlet. With the exception of the
experiments concerning the partitioning of |H] between h and =, all
results reported in this chapterwere obtalned with the 13-point formula.

The experiments just described were performed with the coarse
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grid shown in Figure Z. The solution on the refined grid of Figure
4, which has two open boundaries along which the elevation is speci-
fied, requires at most three iterations. Also the discrepancies
between the results obtained with the 3-point integration formula
(mid-side points) and those calculated with the 13-point formula

are much smaller on the fine grid than on the coarse one.

COMMENTS ON THE APPLICABILITY
OF A TIME-STEPPING PROCEDURE

The efficiency of the modal decomposition approach as compared
to a time-stepping procedure is illustrated in this section. To
this end, the numerical model developed by Connor and Wang (and
described in their joint publications of 1973, 1974, 1975) was
applied to Knight Inlet. The mode]l used is designated as CAFE-1
[Circulation Analysis (using) Finite Elements, one-layer model],
and the computer code was made available through the services of
the Massachusetts Instituteof Technology Sea Grant Program (see
reference MIT/Marine Industry Collegium). The CAFE-1 model is
designed to sclve a set of equations that differs from the usual
shallow water wave equations by the inclusion of horizontal internal
stress terms, modeled by means of "eddy" viscosity coefficients.

The equations are transformed to their so-called weak form {a pro-
cess akin to a formulatjion based on the method of weighted
residuals) on which the finite element method 1is applied (linear
triangular elements). Wang and Connor (1975) have considered
several different schemes for the time integration of the resulting
system of ordinary differential equations and they selected a “time-
split" procedure (in which the variables, i.e., discharges and total

depths, are calculated at alternating time steps) for use in CAFE-1.
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Several applications of the model for the calculation of tidal and
wind-driven circulations in real systems exemplify its usefulness.
Wang and Connor {1975) describe three case studies, of which the
most detailed one is the application to Massachusetts Bay. {Inciden-
tally, it appears from their discussion that the real purpose of
the inclusion of the lateral viscous terms is to ensure mumerical
stability or, in some instances, to smooth out short-wavelength
noise.] Other illustrations include the application of CAFE-1 te
the Great Bay estuarine system (Celikkol and Reichard, 1976} and
to part of Biscayne Bay (Swakon and Wang, 1977).

As might be expected in a pioneering enterprise of such com-
plexity, the procedure developed by Connor and Wang is not flawless.
Several pertinent remarks can be found, for imstance, in Lyoch's
{1978) critical review of the recent literature on this topic. In
the present study, various computations with CAFE-1 of linear,
frictionless long waves in rectangular basins of constant depth have
led to the conclusion that the numerical solutions obtained with
this program are rather inaccurate. The main problem, however, is
the necessity of using a fairly small time-step iIn order that the
scheme be stable, This was recognized by Wang and Comnor (1975,

p. 127) who could neot explain why the split-time preocedure, found
analytically to be "linearly unconditionally stable as an initial
value problem,” is actually unstable in practice when the effective
time-step exceeds the Courant-Friedrichs-Lewy coanstraint by about
50%. According to Lynch (1978), the appropriate stability constraint
for this scheme is the same as for the leapfrog method; the criterion
is nearly identical to that "experimentally" derived by Wang and

Conner. Thus, for practical purposes, the time-step used in CAFE-1
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is approximately constrained by the condition

As

28t < At =
— Ter

ﬁ
o
o

where As is the grid size and D the depth of the water. In the case
of Knight Inlet the combination of high resolution (i.e., small As)
and large depth leads to the requirement of an exceedingly small
time-step. Starting from rest and using the "coarse” grid of Figure
2, with At = 10 seconds, the procedure 1s unstable after about 400
seconds; with At = 5 seconds, no instability occurs during the first
800 seconds of the integration. If one assumes that the latter
time-step 1s small enough to carry out the calculations in Knight
Inlet, approximately one hour of CP time on the Cray-1 computer would
be needed to cover a single H2 period! This figure does not compare
favorably with the CP times required by the procedure described in
this study (less than 10 seconds, see "Numerical Considerations").

Hence, the application of CAFE-1 to Knight Inlet was aborted.



4 REMARKS ON THE EFFECT

OF THE EARTH'S ROTATION

e
STATEMENT OF THE VARIATIONAL PROBLEM

In a narrow, elongated basin such as Knight Inlet, physical

intuition might suggest that the Coriolis acceleration should not
greatly affect the barotropic tidal flow. In practice, however,
the inclusion of the Coriolis term produces certain difficulties,
regardless of whether or not the dissipation term is retained.
Following an outline of the problem and the method of solution, two
questions will be discussed in this section; they are a) the
specification of the condition at the open boundary, and b} the
effect of a sudden change in depth.

Consider the simplest possible (i.e., linear, frictionless)
equations of wave motion taking into account the Earth's rotation.
In the notation of Chapter 2, with f denoting the Coriolis
parameter, and e, a unit vertical vector directed upwards, the

governing equations are

-1l + fe_ x U = - gyH (13)
-iuH + 9 - (DU) =0 . (14)

Equation (13) can also be written as

U__ 2 2("1111__?['1 — fg_ x ?H) » {15)
- z
(w -1

and the substitution of (15) into (14) yields
(w2 fﬁ{ f
» (DVH) +2 7. 1 = - =
v - (BbVH) . +1i e - (VXDVH) =0 . (16)

The condition (8) of zero normal flow across the solid boundary

becomes



(9.?+1£—E-Y)H=Oonl‘2 , (17)

where n denotes the outward-directed normal unit vector and
I =e xn. Let us assume, for now, that we can specify the

-z

elevation at the open boundary, i.e.,
H givenon T, . (18)

Two approaches to the solution of (16), (17), and (18) have
been considered; as in Chapter 2, both involve the separatiom of H
into its real and imaginary parts, H = h + is, and an iterative
scheme for the calculation of h and 8. The third term of (16) and
the second term of (17) are then "known" functions of space at each
iterative step, for those terms contain only derivatives of s in
the equation for h, and vice versa.

In the first approach, the '"forcing" terms are simply carried
along in the variational formulation. Therefore, the variational
functional contains a boundary integral. For example, the problem

statenent for h, f.e.,

2 .
(w -y f
v+ (DVh) ¥ . h -~ (Dxay Dysx) 0 . (19)

with

3h f as

B_n-_t;?r‘_o onT‘2 ’ (20)
and

h given on T (21)

is equivalent to the variational condition ﬁJl = ( for all &h

vanishing on Fl with
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e 2
D, 2 2 _.(” -f) hz
I (bbb f[z(hx'i‘hy) 7
A

f fD 3s

+ (Ds - D s )b ] dA f — 2Thde , (22a)
FZ

where £ denotes arc length along the contour. Similarly, the

variational integral for s is given by
2 2
_ D, 2, 2y (w-f7) 2
Jl(s,sx,sy) -—f[z(sx+sy) ie 8
A

£ fD ah
- w(nxhy_ thy)s ] dA+ » ac’ dg . (22b)
r

Obviously, this approach can also be implementedzwith the more
general forcing functions that would result from the insertiom of,
say, a frictional term in the momentum equation. The forcing func-
tion might then alsc involve derivatives of the function that is
varied, as was the case with the right-hand side considered in
Chapter 2, and denoted by Fn in equation (12). The value of the
function can then be computed from the results of the previous
iteration.

In the alternative approach, the specific form of the forcing
term is considered, and the boundary condition along I, is made a

natural condition of a variational principle that consists only of

an area integral. Consider again the problem for h. If we define

Y=Ds e -Ds e .
~ y-x x-y

equation (19) can be written as

2 2
?' (Dyh)+w—g"—-h——l§?'.!p=o
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and a variational principle can be constructed in the usual way.

Let

f

2 2
w - f
~63,(,h . b)) jig S (¥R + k- g;] §h da 3
A

the first two temms yield, by a routine manipulation,

2 2
-6 Dign|%aa + Di’-‘lehds+ﬁf@—~:—f—lh2u .
21 an 2g
A

A r

Because ¥ is a function of s only, the third term is equal to

£
éf v - Yh&—f;g-géhdf, .

A T

Elm

The integration of the boundary terms can be limited to r, since

éh = 0 on I‘l, and, because

_S“)‘D_a_g
Xy

E-Q’,:D(s 3T .

n
- y)(

equation (20) is the natural boundary condition resulting from the

variational condition

6J2 = 0 for all 6h vanishing on I’1 with

2 2
_f12n2 2y _ (w -~ f7) .2
Jz(h,hx,hy) f[z(hx + hy) 7 h
A

+12 (5 —sh)]dA . (23a)
w Xy y x

A similar derivation for s leads to

2 2

f1p, 2 2 (w° - £°) 2
Jz(s,sx.sy) —'/-[2(31_ + sy) -2 s
A
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+Q(sh
W X

v " Syhx) ]d.A . {23b)

Equations (23) can also be derived directly from (22),

For Knight Inlet, both the solution of equations {22a-b) and
that of equations (23a-b) were programmed. The integration of all
the terms over each element, and, for equations (22), over each
boundary segment can be performed exactly. Hence, as expected, the
two approaches lead to identical results at each step of the
iteration.

Although little is gained computationally by use of the second
formulation, it has a somewhat unusual property. The two variational
problems defined by (23a) and (23b) are coupled through the last
term of each integral. Because these terms are identical, it is
possible to formulate a3 unique variational principle equivalent to the
pair of coupled real equations and boundary conditons, resulting from
the splitting of the complex equations (16), (17), and (18). Such a
principle was given by Pearson and Winter (1977) [their equation
(31)] and also, in a different form, by Hamblin (1976). A simple way

to construct the global functional J(h’hx’hy’s’sx’sy) is to set

-263 = f [(16)6}{* + (16)*611] dA
A

- f D [(l?)éH* + (17)*6[1] dag s
r

2

where the pumbers (16,17) denote the left-hand side of the respective

equations, and the asterisk a complex conjugate. After some alpebra,

J turns out to be real and given by



2 2
_ D,2..2_ 2 2 1(u -£) .2 2
J f[z(hx+hy+sx+sy) 2 g (™ + s87)
A

+£ D (s h
w x

y ~ hxsy) I da . (24)

The detaile of the derivation are described in Appendix A. It is
easily shown that in the absence of rotatiom the variatiounal prin—
ciple iz simply Hamilton's principle applied to the linear shallow
vater vave problem, l.e., the variational functional J is propor-
tional to the difference between total kinetic (T) and potential (V)
energles. However, with f ¥ 0, the physical principle expressed

by (24) is not entirely clear, but J is definitely not proportional

to either T + V, as claimed by Bamblin (1976, 1978), or T-V as in
Hamilton's principle.
RESULTS
Figure 11 shows the main axes of the tidal ellipses obtained
by solving the Kelvin wave equations (22a,b) with the condition that
h=s5=+2mon Fl' There are three major differences between these
results and those described in Chapter 3 and summarized in Figure
8:
a. the minor axes of the ellipses of the elements close to
the open boundary are much larger than in the previous
case,
b. the tidal ellipses are also much "fatter” in the sill
area, and
c¢. the maximum speed over the sill is about 751 larger than

- -1
the corresponding value obtained with E = 1 x 10 2 m sec .

The first point is expanded upon in the following sectiomn, and a
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Figure 11. Axes of the tidal ellipses for the Kelvin wave
probler when a uniform elevation is specified along the
entrance of the fiord.

modification of the boundary condition at the entrance is proposed
to eliminate what appears to be an unrealistic result. Both the
second and third points appear to be related to the broad topic of
the effects on waves of lateral boundaries. The rigorous mathe-
matical description of such effects is very complex. A detailed
catalog and comprehensive bibliography of various phenomena (e.g.,
partial or total reflection, trapping, diffraction and scattering,
Interactions) can be found in the recent book by LeBlond and Mysak
(1978). Only a heuristic argument will be developed in this chapter,
leading to the conjecture that Poincare waves generated at the sill

might be the source of signifiecant observed and calculated cross-—
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channel motions in that area. The third point can be partly
explained by the absence of the frictional effect along the bound-
aries in the results of Figure 11. Without the Coriolis term the
maximum speed over the sill cccurs in the middle of the channel for
E=1x 10_2 m sec_l; with E = 0, it occurs in a boundary element
and is about 35% larger. 1In all casesg, the velocities away from the

solid boundary are nearly identical.

MODIFICATION OF THE CONDITION
AT THE OPEN BQUNDARY

When a uniform elevation 18 imposed along the mouth of the
estuary, the nearby velocity field is characterized by the presence
of a large permanent "half-eddy,” f.e., the direction of the flow
at one end of r, is almost opposite to that at the other end as
shown in Figure 12. Such a feature is umrealistic and the boundary
condition chosen on Fl is clearly inappropriate. Pearson and
Winter (1977) encountered a similar problem in their computation
of tidal flow in a semi-elliptical basin. They argue that the great
sensitivity of the currents in the interior of the domain to small
changes in the §eaward boundary condition results from the fact that
the mathematical problem is not well-posed. They discuss the imple-
mentation of a proper matching technique, the so-called "admittance
condition" (e.g., Lee, 1971; Garrett, 1975). In actual practice,
they advocate the use of a "simpler procedure in which a small phase
gradient is imposed on the tidal height input at the seaward

boundary.” Such a procedure is essentially a trial-and-error
approach, guided by the condition that the flow along I‘l should be
nearly normal to the entrance of the basin. Maler-Reimer (1977)

also reports "obviously falsified results™ in the neighborhood of a
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"doubtful boundary condition" im his model of the residual circula-
tion in the North Sea; he attributes the feature to a lack of
geostrophic adjustment along the boundary and chooses to ignore the

problem on the basis of its limited spatial exteant (4 to 6 grid lines).



In the case of Knight Inlet, the phenomenon is also restricted
to a few elements adjacent to Pl (Figures 11 and 12}; it appears to
be due to the inconsistency of the boundary conditions at the junc-
tions of Pl and Fz, and not related to the "effect of landward tidal
reflection” (Pearson and Winter, 1977). Taylor's condition for
total reflection of the incident Kelvin wave (Taylor, 1921, or see
Defant, 1961, p. 213) is certainly satisfied for such a narrow
channel; moreover, the Poincaré waves that are necessary to
satisfy the condition of no normal flow at the head of the inlet
decay within a few kilometers of the landward barrier. In order to
wake the boundary conditions consisteat at their junctions, a trans-
verse slope must be speclfied across rl on both the incoming and the
outgoing Kelvin waves, or equivalently, a phase gradient. The
appropriate modification can be estimated in several ways.

The first method (Taylor, 1919) follows directly from thé
assumption of cross-channmel geostrophic balance along Fl, i.e., 1In
the y-direction (see Figure 2). With U = ng + ng, such a balance

is expressed by

al f
— = -=1 + 25
3y g (23)

With Vv = 0, the longitudinal velocity near rl is given by

Uy=-1i ﬁ~%%, and it is easily verified that the boundary condition
at the corners between rl and P2 is uniquely defipned. The velocity
U can be estimated from the results obtained in the previous
chapter with E = 0. 1In that case and with h = 8 = Y2 m on rl, the
average yalue of U, over all elements that have at least one node

on F}' is U= 14.2 (1-1) cm sec ! and {25) yields
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H -
%; = -1.61 x 1075 (1-4) - (26)

A second estimate of the correct boundary condition can be
derived from available analytical solutioms for the problem of the
reflection of a Kelvin wave by the end wall of a rectangular basin.
For Knight Inlet, the most appropriate formula is the limit derived
by Brown (1973) for very narrow canals. Consider a semi-infinite
rotating canal of constant depth D that occuplies the region defined

by x > 0, 0< y < a, and define c, = (gD)%, & .‘%E 3

sand F = —,
o W
Brown shows that if -8 << 1, the end effect is virtually absent

[in fact, it is 0(92)] and the elevation is approximately given by
L = Re [e-iwt ({2-FB) cos OX + iBF(1-2Y) sin BX]] , (27

where X = i—and Y = in From (27), we see that the amplitude of H
is independent of v to order 82. The phase of the elevation is
symmetric about the mid-channel axis and negative on the right-hand
side of the incoming wave; the phase difference between ¥ = 0 and

Y =1 is given by

2-aF

s¢ = 2 tanwl( tan BX) . {(28)

For the M2 tide in Knight Inlet, with a = 3000 m and using a depth
D = 200 m representative of the outer basin, we have 8 ~ 9.5 x 1073

and F = 0,80, Since X < 33, equation (2?8) can be approximated by

(29)

For x = 100 km, equation (28) yields 6¢ = 0.143° while (29) gives
& = 0.136°. This approach is usefyl because it gives some indica-

tion of the magnitude of the phase gradient that is appropriate
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across rl. However, its applicability to a long fjord such as
Knight Inlet is restricted mainly by the assumption of constant
depth. This 1is also true of the results of Pearson (1977).

A third approach (M. Rattray, Jr., personal communication) is
based on the limited extent of the perturbation due to a poor choice
of the mouth condition and the apparent adjustment that occurs
between I‘1 and the sill (Figure 11). The finite element grid could
‘be extended seaward of Pl in a fictitious rectangular canal at the
end of which a uniform elevation would be specified; the solution
at Fl would then have adjusted to geostrophy and the flow would be
normal to the true entrance as desired.

The fourth approach is somewhat more general and yet fairly
easy to implement on a computer. It consists of specifying the sur-
face elevation at only one point of the open boundary and the
direction of the velocity along the entire entrance. This strategy
has also been used by Walters and Cheng (1978), although for a com-
pletely different reason, namely, to satisfy better the requirement
of continuity. Given the geometrical configuration of Knight Inlet,
it seems reasonable to require that the velocity be normal to the
entrance of rthe inlet segment. The boundary condition (18) is then

replaced by

U «1=0 onl"l s {30)

or, upon substitution of (15), by

TmtlsEs.=0 onT (31)

with H specified at one point of Pl' The new complex condition (31)
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can again be Incorporated io a pair of variational principles to
be solved iteratively; for the real part of H, the variational
functional becomes (sece Appendix A)
(mz -\ f2 2
SACRIN =f [ L h2) - _Tg_)' b
A

2 2
D (w - f) 3s (32a)
+ ” (s h - Syhx)] da _fr D oE at h d& s

while the imaginary parrt, s, is given by 6J3 = 0 with

2
Ja(s,sx,sy) =f [%(5)2( + s;) S —f) 52
A

2
- f
2g

2 2
fD _ (w - f ) 8n
+ o (thy syhx)] dA +fr D “%F 3¢ S de {32b)
1

In the finite element solution of equations (32), the wvariations 6h

and 86 vanish at only one node on the open boundary. The results
obtained with h=s=v2 m at the central node of Fl are shown in

Figure 13. The tidal ellipses in the neighborhood of the entrance

are almost straight lines and the velocities are alwmost in phase on
both sides of Fl. This is 1llustrated by the veloeity vector field

at a = 0 shown in Figure 14. The calculated cross-channel slopes

of h and s are -(1.68 + 0.12)x10° and (1.55 + 012 x 10 respec—
tively, very close to the values pPredicted by equation (26). The
uncertainty affecting the computed results is determined from the
convergence criterion (see "Numprical Considerations") applied to the
iterative procedure; a tolerance of 10—4 was used in these calculations
and convergence was achieved after 13 iterations. The phase difference
across I‘1 is found equal to (0.155° + 0.0110) and is comparable with

the result of equation (28). The phase relative to thar at the
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Figure 13. Axes of the tidal ellipses for the Kelvin
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vanish along the open boundary and the tidal height speci-
fied only at the central node of that boundary.

central node is negative at the southern shore, positive on the
other side.

An independent estimate of the phase difference between the two
sides of the channel is available from tide gauge measurements made
on both sides of station 3 (see Figure 1). After correction for
clock drifts (a few seconds at most), the mean of four observations -
1s 0.13° (=16 seconds) with a standard deviation of 0.017° (Freeland,
personal communication). From the r.m.s. noise level in similar
tidal elevation spectra, Freeland and Farmer (1980) evaluate an

expected error in phase determination of 0.08° at the H2 frequency.



METERS NORTH OF SO DEG. 38 M

158000

L 4000

[MSERT VELOCITY YECTOR SCALE. W/SEC

L 1 L i 1 1 'l i 1

0 .06 2.00 23.00 4.00

MAXIMUM INSERT SPEED -  .919 W/SEC

Y

VELOCITY VECTOR SCALE. M/SEL

45000

[INEr

0 .30
10000 MAXIMUN SPEED -. .182 H/SEC
5000

PROMINENT PT. KELVIN WAYVE
PRUT‘H . MODIFIED VARIATIONAL PRINCIPLE
0 5000 10000 15000 25000 30000 35000 40000
METERS ERST OF 126 DEG. 12 MIN. W.
Figure 14. Velocity vector field for the Kelvin wave problem

at a = 0, 1.e., near the time of maximm flood currents at the
entrance; the boundary condition is the same as in Figure 13.

However, they argue that such error bars should be regarded as

pessimistic estimates considering the consistency in sign of many

observations of very small phase differences.

Although the size of

the sample described above is very small, the magnitude of the

standard deviation tends to add credibility to the significance of

the mean (using Student’s f-test, the 95% confidence interval is

+0.05%).

In conclusion, the general agreement amongst the several phase

gradient estimates is very good and is unlikely to be fortuitous.

The problem formulation described by equations (32) does provide a
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means to eliminate the spurious eddy in the vicinity of the open
boundary. A comparison of Figures 11 and 13 shows that the results
over most of the inlet are not affected by the modification of the
boundary condition.

EFFECTS OF THE SILL

As diacussed in Chapter 3, a major effect of the sill is a
sudden and large increase in the magnitude of the longitudinal
velocity in order to satisfy mass continuity. This effect is also
obgserved when the Coriolis term 1s included in the equations, and
the resulting longitudinal distribution of the amplitude of the
elevation is similar to that of Figure 7a. However, the amplifica-
tion factor between Siwash Bay and Fl is a bit smaller than in the
absence of rotation (1.0310 instead of 1.0351) and therefore closer
to the observed value (see "Comparison with Available Data"). The
amplitude ratio between Wahshihlas Bay and Siwash Bay 1s almost
unchanged (1.0129).

A second effect of the s{ll 1is a perturbatfon of the geostrophic
adjustment in the cross-channel direction that was achieved in the
neighborhood of the entrance by the method just described. For the
linear case under study, with U = Ue + ng, & congideration of the
momentum equation in the y-direction indicates that the two terms

that can balance the Iincrease of "f U" are:

2.,

1} the force due to lateral pressure gradient, "g 3y

i1) a cross-~channel acceleration, "-{fuy."
It appears that both terms are uneeded to explain the results ob-
tained here. Constraints on the problem are 1) the condition of
zero normal flow at the lateral boundaries, and 2) the requirement

that the free-surface elevation and the transport be continuous
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over the obsatacle.

The cross—channel variation in the calculated free-surface
elevation is best shown by the results for the phase. Figure 15
displays the phase relative to the central node of Fl as calculated
on the refined grid. Across the western open boundary of the
refined grid, the cross-channel phase difference 6¢ 1is 0.1520,
very close to the corresponding value across Fl » the open boundary
of the coarser grid. In the vicinity of the sill, §¢ increases
rapidly to a maximum of about 0.250, indicating an increased
tilting of the free surface in the shallower region. No field
evidence is available to verify or contradict this cbservation
based on calculations. However, the result is not inconsistent with
the phase difference cbtained by applying locally the equation

derived from Brown's (1973) results for a constant depth, narrow,
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rectangular channel. With x = 75 km and D = 50 m as the average
depth at the sill, equation (28) yields 8¢ =0.37° (this equation,
however, 1s rather sensitive to the choice of mean depth and with
D=75m, for example, it gives ¢ = 0.25°). Figure 15 clearly
shows the tendency towards gecostrophic adjustment by increased
tilting of the sea surface. However, the tidal ellipses of Figure
13 also indicate significant cross-channel motion at the M,
frequency in the vicinity of the sill,

In order to satisfy the boundary condition at the lateral
walls, the cross-channel motion must be composed of Poincare

modes, i.e., the solution is oscillatory in the “y-direction.”
2
Ll (mz — fzz
Since 5 -
a gD

away from the sill, and the “x-dependence" is an exponential decay

> 0, none of these Poincaré waves propagates

on both sides of the obstacle. The evidence for the presence of
those modes in the results of the calculations is somewhat vague

for several reasons. First, the bathymerry of the inlet and the
configuration of the shoreline are sufficiently complex to blur the
idealized picture of "pure" Poincare waves generated and trapped at
a step-like obstacle in a straight channel. Second, the finite
element grids used in this study are only marginally sulitable to
resolve perturbations of the basic flow on such small scales. Third,
the limitation imposed on the accuracy of the solution by the finite
rate of convergence of the iterative scheme has to be kept in mind.
Last, the condition of zero normal transport along the solid bound-
ary is not as well satisfied as in the absence of rotation,
especially in the proximity of sharp angles (see Figures 13 and

14, near Hoeya Head and MacDonald Point for instance). The refine-

ment of the grid does not eliminate the problem. it may be that
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the boundary condition needs to be more strictly enforced than is,
in some cases, the naturai boundary condition of a variacional
principle. A procedure to that effect has been suggested recently
(Jamart, 1980}, but it has not been 1mp1ementéa for Knight Inlec.
In support of the propesed conjecture, note that in the center of
the channel the ratio of the length of the minor axis to that of the
major axis 1s about 0.30 over the sill and decays rapidly on both
sides, somewhat faster on the wider, down-inlet side of the sill than
in the up-inlet direction. Short wavelength oscillations can be seen
in plots of cross-channel distribution of the Fourier coefficients of
the north-south velocity, but the confidence limits are falrly
large. Finally, a comparison of Figures 5 and 14 shows that the
pattern of velocity directions is less amooth when the Coriolis
term is included in the calculations. Observations also provide
evidence of cross-channel motion at tidal frequency.

The velocity measurements of Pickard and Rodgers (1959) at
atations 3% and 5 (Figure 1) clearly show that large transverse com-
ponents of current are observed in Knight Inlet. The cross-channel
currents are much larger at the sill than in deep water. Moreover,
Pickard and Rodgers point out that "the directions and magnitudes
{of these cross-channel currents) appear to vary randomly and do
not show any significant tidal component" at station 5, whereas,
at the sill statiom, there is "some apparent tidal periodicity in
the transverse components.'" They attribute this latter feature
"to an effect of the bottom topography which apparently results in
the flood and ebb direction being less than 180° apart in that inlet

section." In fact, their interpretation {(see Pickard and Rodgers,

1959, pp. 668~669) is based solely on the configuration of the
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shoreline, and hence differs from the present suggestion that the
8ill is responsible for the generation of transverse waves in the
inlet. Further observational evidence for transverse motion at
tidal frequencies can be deduced from Cannon's current measurements
at stations 4, SN' and SS. Table 2 lists the magnitudes and phases
of the Hz bpectral components communicated by G. Cannon, and the
ellipses’ characteristics that were calculated from those data. As
discussed in “Comparison with Available Data,"” the large phase
differences between observations at different depths on a given
mooring are indicative of the importance of baroclinic motion in
the inlet. Nevertheless, it appears that significant transverse
currents are measured at the station closest to the sill while all
North-South velocity components recorded at atations 5N and SS are

below the noise level of the spectra.

Table 2: Rasults of current messurements at stations &, 5". and Ss {communicated by C. Cannon}.

EASTWARD VELOCITY NORTHWARD VELOCITY TiDAL ELL]PSES
ORIENTATION
SEMI- SEM1- {counter
¢ + MAIOR HINOR clockwine
STATION | Depth SPEED | | PHASE SPEXD_, | PHASE AX1S_, axis M from East)
WLMBER (m) (cw wec )} | (degree) (cm sec ) § (degree) (cm wec ') | {cm gec” ) (degree)
4 b5 8._32 163.06 3.51 -132.21 B.48 3.12 11.86
4 125 7.%0 125.98 1.65 -108,58 7.96 1.% -71.01
4 300 5.69 7.2 1.97 -11.B& 5.53 ~1.85 -7.3)
[ 163 7.50 21.70 2.47 -61.25% 7.51 -2.486 Z.61
SN 15 10.28 112.11 0.4% -12.30 10.28 -0.41 ~1.53
5 294 B.74 145.00 0.8b 124,18 B.78 -0.31 5.24
55 82 13,28 i12.68 .09 -49.87 13.32 -0.1 .47
55 323 6,42 143,75 0.5% -56.25 .45 0_20 —4._95

Nz TIDAL Currents

*
tt

Relative to an arbitvary time origin (the beginning of the record).
A winus sign indicactes clockwine rotation of the velocity wvector.




o SUMMARY, OONCLUSIONS,

AND RECOMMENDATIONS
FOR FUTURE WORK

For tidal computations, the sclution of the shallow water wave

equations in Fourier space or in terms of harmonic constituents 1Is an
attractive alternative to the conventional time-stepping methods. The
harmonic approach has proved useful in the computation of tides in
ocean basins (Hendershote, 19?7),'shallow bays {Synder et al., 1979},
harbors (Kawshara and Hasegawa, 1978), and deep inlets (the present
study). The premise of the approach -- the decomposability of the
time~-dependent tidal signal into modes corresponding to discrete
frequencies — 1s also commonly used to verify physical or numerical
models (e.g., Whalin eé al,, 1976, Ronday, 1979).

The procedure proposed by Pearson and Winter (1977) for the
computation of tidal constituents and the simpler linear version
described by Jamart and Winter (1978) are outlined in Chapter 2.

Chapter 3 describes the application to Knight Inlet, British
Columbia, of the simplified version of the computational procedure.
It is assumed that the internal mechanisms that extract energy from
the barotropilc tidal flow in the vicinity of the sill can be modeled
as a body force proportional to the velocity divided by the local
time-mean depth. Such a dissipation term is most influential over
the s111 and along the shores of the fjord, Bottom friction in the
usual sense is assumed negligible, as is the Coriolils acceleration
in the first part of the study. The advective terms are also
presumed of secondary importance in the calculation of the dominant

(HZ} tidal constituent. After elimination of the velocity, the
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equations and boundary counditions governing the spatial distribution
of the elevation are rephrased in terms of a variational problem
that is solved by means of a finite element method. The (constant)
dissipation coefficient is adjusted so that the calculated phase of
the tidal elevation matches obaservations at three atationa along the
inlet. The amplitude of the elevation and the magnitude and phase
of the longitudinal velocity are found to be in good agreement with
al] of the available data. The conclusion is that the simple
linearized model adequately reproduces the main features of the
dominant tidal constituent in a deep estuary such aa Knight Inlet.

A variational principle can also be constructed for the Kelvin
wave problem comsidered in Ch:pter 4, i.e., the case where the
Coriolis term is inserted in the momentum equation and the disaipation
term neglected. It is important that boundary conditions of dif-
ferent types be consistent at the junctions of the boundary segments
along which they are prescribed. Specifically, when rotation is
taken into account, the specification of the tidal height along the
open boundary should include a phase gradient which appropriately
reflects lateral dynamics in order to eliminate a spurious “half-
eddy" across the mouth of the inlet. Several ways of estimating
this @ priori unknown phase gradient are discussed. The most
general procedure appears to be a reformulation of the boundary condi-
tion at the estuary mouth, which consists of specifying the surface
elevation at only ome point of the open boundary and the direction
of the velocity along the entire entrance. Given the geometrical
configuration of Knight Inlet, it seems reasonable to require that
the velocity be normal to the entrance of the fjord. This condition

can be incorporated in the variational formulation of the Kelvin
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wave problem. The cross-channel phase difference calculated by
implement ing this strategy is consistent with other estimates and
with the value measured at a nearby location. Future work along
these lines could include the consideration Jf more general boundary
conditions {(e.g., spatially and/or time-varying flow direction,
complete specification of velocity) and the restoration of the
dissipation term in the momentum equation. A deep and narrow fjord
such as Knight Inlet does not appear to be an appropriate case on
which to carry out such developments.

At the end of Chapter 4, it is conjectured that the cross-
channel motions of tidal frequency that are observed in the vicinity
of the sill may be a manifestation of trapped Poincaré waves
generated at the sill. 1If this speculation is valid, such a process
should be relevant to the study of lateral mixing in fjords, In any
event, the phenomenon deserves further investigation; for a theoret-
ical study, a more schematized geometry (rectangular channel,
single atep perpendicular to the longitudinal axis) would be most

appropriate.



APPENDIX A DERIVATION OF
THE VARIATIONAL PRINCIPLES
FOR THE KELVIN WAVE PROBLEM

1. Conventlonal boundary condition
After elimination of the velocity, the spatial distribution of
the free-surface elevation, H, 1s governed by equations (16) to (18)

of Chapter 4&. These equations are

2 2
v - DYH+£9————§HE~—1H+1£QZ' (V x DYH) = 0 in A (A-1)

with H given on T, (A-2)
oH f 3H
and 30 + 1 © 31 0 on [p. {(A-3)

To construct a variational principle equivalent to (A-1,2,3), set

-28) = f {(A-1)8H* + (A-1)*0H] dA
A

- f D[(A=3)8H* + (A-3)*8H] dE . (A-4)
r

2
where the asterisk denotes a complex conjugate and the equation

numbers stand for the left-hand sides of the equations. In view of

{A-2), one has
SH = &H* = on T,. (A-5)

Consider each term of (A-4) separately. The first term can be

transformed as follows:

f (v - DVH)8H* dA =f ¢ - (DVHSH*) dA _f DYH - YSH* dA
A A

A



nfn % SH* dE —f DVH - SYH* dA. (A-6)
A

r

Similarly, the complex conjugate of that term is equal to

aH#
fn—é; SH de -fngm - 8YH dA. (A-7)
A

r

The second term and its conjugate yield

2 _ g2 2 _ g2
j .g"’_gf_l (HEH* + H*SH) dA - fL‘E_g_f_.)_ HH* dA. (A-8)
A A

The third term of (A~4) and its conjugate are

fié [gz » (7 x DVH)8HX - ¢ - (¥ x DYHH) GH] dA. (A-9)
A
Because of (A-5), the contour of the boundary integral in (A-4) can
be replaced by the complete perimeter of the domain. The terms
invelving the normal derivative and its conjugate are simply

M 3H
- flrftind * — -
fn 5m SHE + 2° esu) dt (A-10)
r

and they cancel the boundary Integrals of {A-6) and (A-7). The

remalning term is successively equal to

- il —_— * - - - — v F 3

r r




Gl

v x (DVH 8H*) dA

N

I
X -]
[, ]

=
E |m™

[
E |mn

e, * (V x DYH) 8H* dA

[
E ™

e * (DVH x VSH%) dA.(A-11)

the first term of (A-11) and its conjugate cancel (A-9); the second

term and its conjugate yield

fi—i—Dgz - (VH x SVH* - VH* x 6VH) dA

A
-«f 1‘EDgz - (VH x SVH* + §VH x VH*) dA
A

-z

= 6/ i é De - (VH x VH*) . (A-12)
A

Summing the contributions (A4-6) to (A-12), one obtains

2 2
~2& = afl-ngn . gﬂ*+(i—~;——f—lm1*
A

+i-£-De « (VH x VH*) | da
w o~z - =

Upon substitution of H = b + is, equation (A-13) leads to equation

(24), 1,e.,

2 2
- D, 2 2 2 2 (w- - £7) 2 2
= = (h" + -l T 7
| j-[z(x hy+sx+sy) 7% (h +s8)
A

f
+—=D(sh -hs)|ada . (A-14)
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2. Modified boundary condition
Consider now the problem defined by equations (16), (17), and

(31) of Chapter 4, 1.e., (A-1), (A-3) amnd

o W oH _
an+1f31 Oonl‘lg

with H specified at one point on PI. (A-15)

An additional boundary integral should be added to equation (A-4),

which becomes

-24) = f [(A-1) 8% + (A-1)*6H] dA
A

-f D{(A-3) 6% + (A-3)*sH] dr
Ty

-f D((A-15)6B* + (A-15)%&H] d¢ . (A-16)
I

The area integral is again equal to the sum of (A-6) to (A-9). The

two contour integrals can be combined to yield

. 2 2
(A-10) + (A-11) - f(i D -““T;f—l) (311611*— OHX &1) de

T aT
r

! (A-17)

The final expression corresponding to (A-13) becomes

2 2
-261'Gf[—-D(h2+h2+sz+32)+u(h2+82)
x y  xo Uy g
A

D
-2 5 (sxhy-hxsy)] dA

2 2
w - f as dh
+f(z — )(51- 6h - 22 és)dE . (A-18)
Fl
and leads directly to equation (32) of Chapter 4.




REFERENCES i
]

Brebbia, C.A., and P.W, Partridge, 1976. Finite element sfmulation
of water circulation in the North Sea. Applied Mathematical
Modelling, 1(2): 101-10Q7.

Brettachneider, G., 1967. Anwendung des hydrodynamisch-numerischen
Verfahrens zuv Ermittlung der Mpy~-Mitschwingungsgezeit in der
Nordsee. Mitteilungen des Instituts fir Meerskunde der
Universitiat Hamburg, VII,

Brown, F.J., 1973. Kelvin-wave reflection in a semi-infinite canal,
Journal of Marine Reasearch, 31(1): 1-=10,

Connor, J.J., and J.D. Wang, 1973, Mathematical models of the
Massachusetts Bay, Part I: Finite element modeling of two-
dimensional hydrodynamic circulation. Report No. MITSG 74-~4,
Magsachusetts Institute of Techmology, Cambridge, Massachusetts,
57 pp.

Connor, J.J., and J.D. Wang, 1974. Finite element modelling of
hydrodynamic circulation. In: Numerical Methods in Fluid
Dynamics, C.A. Brebbia and J.J. Connor [Eds.],pp. 355-387.
Pentech Press, London.

Crean, P.B., 1978. A numerical model of barotropic mixed tides
between Vancouver Island and the mainland &and its relation to
studies of the estuarine circulation. In: Hydrodynamics of
Estuaries and Fjords, J.C.J. Nihoul [Ed.], Elsevier Oceanog-
raphy Series, 23, pp. 283-313. FElsevier Scientific Publishing
Company, Amsterdam,

barwin, G.H., 1898. The Tides; and Kindred Phenomena in the Solar
System. Reissued in 1962 by W.H. Freeman and Company, San
Franciscec, 378 pp.

Defant, A., 1961. Physical Oceanography, Vol. 11, Pergamon Press,
New York, 598 pp.

Dronkers, J.J., 1964, Tidal Computations in Rivers and Coastal
Waters. North-Holland Publishing Company, Amsterdam, 518 pp.

Farmer, D.M., and J.D. Smith, 1978. Nonlinear internal waves in a
fjord. In: Hydrodynamics of Estuaries and Fjords,
J.C.J. Nihoul [Ed.], Elsevier Oceanography Series, 23,
PP- 465-493. Elsevier Scientific Publishing Company, Amsterdam.

Freeland, H.J., and D.M. Farmer, 1980. The circulation and ener-
getice of a deep, strongly stratified fjord. Canadian Journal
of Fisheries and Aquatic Sciences (in press).

Garrett, C,, 1975. Tides in gulfs, Deep-Sea Research, 22: 23-35.



64

Gray, W.G., 1977. An efficient finite element scheme for two-
dimensional surface computatioma. [n: Finite Elements in
Water Resources, W.G. Gray, G.F. Pinder, and C.A. Brebbia
[Bds.], pp. 4.33-4.49. Pentech Preas, London.

Grotkop, G., 1973. PFinite element analysis of long-period water

waves. Computer Methods in Applied Mechanics and Engineering,
2: 147-157.

Hamblin, P.F., 1976. Seiches, circulaticn, and storm surges of an
lce-free Lake Winnipeg. Journal of the Fisheries Research Board
of Canada, 33: 2377-2391.

Hamblin, P.F., 1978. Finite element methods applied to the modelling
of the circulation, seiches, tides, and storm surges in large
lakes. JIn: Finite Elements in Fluids, Vol. 3, R.H. Gallagher,
0.C. Zienkiewicz, J.T. Oden, M. Morandi Cecchi, and C. Tayloxr
(Bds.], pp. 269-28]1. Wiley-Interscience, London.

Hangen, W., 1956. Theorie zur Errechnung des Waeserstandes und
der Strtmungen in Randmeeren nebst Anwendungen. Tellus, 8(3):
287-300.

Heaps, N.5., 1969. A two-dimensional numerical sea model. Philo-
aophical Tramsactions of the Royal Society of London, A,
220: 93-137.

Hendershottr, M.C., 1977. Numerical models of ocean tides. In:
The Sea, Vol. VI, E.D. Goldberg, I.N. McCave, J.J. O'Brien,
and J.H. Steele [Eds.], pp. 47-95. Wiley-Interscience,
London.

Jawmart, B.M., 1980. Finite element computation of barotropic ridal
motions in deep estuaries. Ph.D. dissertation, University of
Washington, Seattle, Washington.

Jamart, B.M., and D.F. Winter, 1978. A new approach to the computa-
tion of tidal motions in estuaries. JIn: Hydrodynamics of
Estuaries and Fjords, J.C.J., Nihoul (Ed.], Elsevier Oceanog-
raphy Series, 23, pp. 261~28l, Elsevier Scientific Publishing
Company, Amsterdam.

Jamart, B.M., and D.F. Winter, 1980. Finite element computation of
the barotropic tides in Knight Inlet, British Columbia. Inm:
Fjord Oceanography, H.J. Freeland, D.M. Parmer, and C.D. Levinga
[Eds.]. pp. 283-289, Plenum Publishing Corp., New York.

Kawahara, M., K. Hagegawa, and Y. Kawapago, 1977. Periodic tidal
flow analysis by finite element perturbation wethod. Computers
and Fluids, 5(4): 175-189.

Fawahara, M., and K. Hasegawa, 1978. Periodic Galerkin finite
element method of tidal flow. International Journal for
Mumerical Methods in Engineering, 12: 115-127.



King, I.P., W.R. Norton, and K.R. Iceman, 1975. A finite element
solution for two-dimensional stratified flow problems. In:
Finite Elements in Fluilds, Vol. 1, R.H. Gallagher, J.T. Oden,
C. Taylor, and 0.C. Zienkiewlcz [Ed=s.], PpP. 133-156. Wiley-
Interscience, London,

LeBlond, P.H., and L.A. Mysak, 1978. Waves in the Ocean. Elsevier

Oceanography Series, 20, Elsevier Scientific Publishing Company,
Amsterdam, 602 pp.

Lee, J.J., 1971. Wave-induced oscillations in harbours of arbitrary
gecmetry. Journal of Fluild Mechanics, 45(2): 375-394.

Leendertse, J.J., 1967, Aspects of a computational model for long-~
period water-wave propagation. Memorandum RM-5294-PR, The
Rand Corporation, Santa Monica, California, 165 PP.

LeProvoat, C., and A. Poncet, 1978, Finite element method for
spectral modelling of tides. International Journmal for
Numerical Methods in Engineering, I12: 853-871.

Lyach, D.R., 1978. Finite-element solution of the shallow water
equations. Ph.D. dissertation, Princeton University, Princeton,
New Jersey.

Maler-Reimer, E., 1977. Residual circulation in the North Sea due to
the My-tide and mean annual wind stress. Deutsche Hydro-
graphische Zeirschrifc, Jahrgang 30: 69-80.

Maxworthy, T., 1979, A note on the internal solitary waves produced
by tidal flow over a three-dimensional ridge. Journal of
Geophysical Research, &4(Cl1): 338-346. )

MIT/Marine Industry Collegium, 1977, Cowputer models for environ-
mental engineering and research in near-coastal environments.
Report No, MITSG 77-16, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 31 pp.

Pearson, C.E., 1977. Note on Kelvin wave reflection in a channel
with an arbitrary end wall. Geophysical and Astrophysical Fluid
Dynamics, &4: 303-309.

Pearson, C.E., and D.F. Winter, 1977. On the calculation of tidal
currents in homogeneous estuarles. Journal of Physical
Oceanography, 7{4): 520-531,

Pickard, G.L., 1956. Physical features of British Columbia inlets.
Transactions of the Royal Soclety of Canada, 50(3): 47-58.

Pickard, G.L, 1961. Oceanographic features of inletas in the
British Columbia ceast. Journal of the Fisheries Research
Board of Canada, 18(6): 907-999,



66

Pickard, G.L., and K. Rodgers, 1959. Current measurements in Knight
Inlet, British Columbia, Journal of the Fisheries Research
Beard of Canada, 76(5): 635-678.

Ramming, H.-G., 1976. A nested North Sea model with fine resolution
in shallow coastal areas. Mémoires de la Société Royale des
Sclences de Liage, 68D€ S&rie, tome X: 9-26.

Ronday, F.C., 1976. Modeles hydrodynamiques. Projet Mer, Rapport
Final. Services du Premier Ministre, Programmation de la
Politique Scientifique, Bruxelles, Belgique.

Ronday, F.C., 1979, Tidal and residual circulations in the English
Channel. In: Marine Forecasting, J.C.J. Rihoul [Ed.], Elsevier
Oceanography Serles, 25, pp. 351-384, Elsevier Scientific
Publishing Company, Amsterdam,

Schinfeld, J.C., 1951. Propagation of tides and similar waves.
Ph.D. dissertation, Staatsdrukkerij en Uitgeverijbedrijf,
'S—Gravenhage, 232 pp.

Shi, N.C., 197B. A study of the nearshore current observations in
Hood Canal, Washington. Masters of Science Thesis, University
of Washington, Seattle, Washingten, 96 pp.

Smith, J.D., and D.M. Parmer, 1977. Nonlinear internal waves and
internal hydraulic jumps in a fjord. Geofluiddynamical waves
mathematics: Research Contributions, Applied Mathematics Group,
University of Washington, Seattle, Washington, pp. 42-53.

Snyder, R.L., M. Sidjabat, and J.H. Filloux, 1979. A study of tides,
setup and bottom friction in a shallow semi-enclosed basin.
Part 1I: Tidal model and comparison with data. Journal of
Physical Oceanography, S(1): 170-188,

Swakon, Jr., E.A., and J.D. Wang, 1977. Modeling of tide and wind
induced flow in South Biscayne Bay and Card Sound. University
of Miami Sea Grant Techmical Bulletin No. 37, 143 pp.

Taylor, G.I., 1919. Tidal friction in the Irish Sea. Philosophical
Transactions of the Royal Society, A, 220: 1-39.

Taylor, G.I., 1921, Tidal oscillations in gulfs and rectangular

basins. Proceedings of the London Mathematical Soclety, 20:
148-181.

Tayler, C., and J.M. Davis, 1975. Tidal propagation and dispersion
in estuaries. [n: Finite Elements in Fluids, Vol. 1,
R.H. Gallagher, J.T. Oden, C. Taylor, and 0,C, Zienkiewicz [Eds,],
pp. 95-118, Wiley-Interscience, London.

Thomson, R.E., 1976. Tidal eurrents and estuarine-type circulation
in Johnstone Strait, British Columbia. Journal of the Fisheries
Research Board of Canada, 33: 2242-2264.




a7

Thomson, R.E., 1977. Currents in Johnstone Strait, British Columbia:
supplemental data on the Vancouver Island side. Journal of the
Fisheries Research Board of Canada, 34: 697-703.

Walters, R.A., and R,T, Cheng, 1978. A two-dimensional hydrodynamic
model of a tidal estuary. In: Finite Elements in Water
Resources, C.A, Brebbia, W.G. Gray, and G,F, Piunder {Eds.],

PP- 2.3-2.21. Pentech Press, London.

Wang, J.D., and J.J. Connor, 1975, Mathematical modeling of near
coastal circulation. Report No. MITSC 715~13, Massachusetts
Institute of Technology, Cambridge, Magsachusetts, 272 pp.

Whalin, R.W., F.C, Perry, and D.L. Durham, 1976. Model verification
for tidal consetituents. Iun: Proceedings of the Fifteenth Coastal
Engineering Conference, pp. 3377-3395. American Soclaty of
Civil Engineers, New York.



